Skip to main content
Log in

Clifford residues and charge quantization

  • Papers
  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We derive the quantization of action, particle number, andelectric charge in a Lagrangian spin bundle over\({\mathbb{M}} \equiv {\mathbb{M}}_\# \backslash \cup D_J \) Penrose’s conformal compactification of Minkowsky space, with the world tubes of massive particles removed.

Our Lagrangian density,\({\mathcal{L}}_g \), is the spinor factorization of the Maurer-Cartan 4-form Ω4; it’s action,S g , measures the covering number of the 4internal u (1)×su (2) phases over external spacetime\({\mathbb{M}}\). UnderPTC symmetry,\({\mathcal{L}}_g \) reduces to the second Chern formTrK L K R for a left ⊕ right chirality spin bundle. We prove aresidue theorem forgl (2, ℂ)-valued forms, which says that, when we “sew-in” singular lociD J over which theu (1)×su (2) phases of the matter fields have some extra twists compared to the8 vacuum modes, the additional contributions to the action, electric charge, lepton and baryon numbers are alltopologically quantized. Because left and right chirality 2-forms arechiral dual, forms are quantized over theirdual cycles. Thus it is the interactionc 2 (E), with a globally nontrivialmagnetic field, that forceselectric fields to be topologically quantized overspatial 2 cycles,\(\int_{{\mathbb{S}}^2 } { K_{or} } e^\theta \wedge e^\varphi = 4\pi {\rm N}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donaldson S. and P. Kronheimer,The Geometry of Four-Manifolds, Clarendon, Oxford (1990).

    MATH  Google Scholar 

  2. Infeld L. and B.L. Van der Waerden, Sitzber. Preuss. Akad. Wiss., Physic. Math. K1. 380 (1933).

  3. Sachs M.,General Relativity and Matter, D. Reidel, New York (1982).

    MATH  Google Scholar 

  4. Penrose R. and W. Rindler,Spinors and Spacetimes, Volume 2, Spinor and Twistor Methods in Space-Time Geometry, Cambridge University Press, Cambridge (1985).

    Google Scholar 

  5. Keller J., “Spacetime Dual Geometry Theory of Elementary Particles and Their Interaction Fields,”International Journal of Theoretical Physics 23, 9 (1984).

    Article  Google Scholar 

  6. Keller J., “Spinors and Multivectors as a Unified Tool for Spacetime Geometry and for Elementary Particle Physics,International Journal of Theoretical Physics 30, 2 (1991).

    Google Scholar 

  7. Cohen M.S., Spin Geometry and Grand Unification,Advances in Applied Clifford Algebras,11, 1 (2001).

    Article  Google Scholar 

  8. M.S. Cohen, “8 Spinor Grand Unification”,Cosmology and Particle Physics, CAPP 2000, ed. R. Durrer, J. Garcia-Bellido, and M. Shaposhnikov (2001).

  9. Cohen M.S., Inertial Mass from Spin Nonlinearity,International Journal of Modern Physics D 7, 5 (1998).

    Article  Google Scholar 

  10. Atiyah M.F., N.J. Hitchen, and I.M. Singer, Self-Duality in Four-Dimensional Riemannian Geometry,Proc. Roy. Soc. (London)A362 (1978).

  11. Cohen M.S., Chiral Unification of Electroweak and Gravitational Interactions,Int. J. Mod. Phys. D 8, 4 (1999).

    Article  Google Scholar 

  12. Brackx F., R. Delanghe and F. Sommen,Clifford Analysis, Pitman Advanced Publishing Program, Boston (1982).

    MATH  Google Scholar 

  13. Gilbert J. and M. Murray,Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, Cambridge (1991).

    MATH  Google Scholar 

  14. Eguchi T., P.B. Gilkey and A.J. Hanson,Gravitation, Gauge Theories and Differential Geometry, Physics Reports, Vol. 66, No. 6, North-Holland Publishing Company, Amsterdam (1980).

    Google Scholar 

  15. Montonen C. and D. Olive, “Magnetic Monopoles as Gauge Particles?”,Physics Letters 72B 1 (1977).

    Google Scholar 

  16. Cohen M.S., “Cosmological Determination of the Weinberg Angle,” inPhoton: Old Problems in Light of New Ideas. ed. V. Dvoeglazov, NOVA (2000).

  17. Horowitz G.T., “Exactly Soluable Diffeomorphism Invariant Theories,”Comm. Math Physics 125 (1989).

  18. Temple-Raston M., “Dyons in Topological Field Theories,”Letters in Mathematical Physics 23 (1991).

  19. Zahed I. and G.E. Brown,Physics Reports 142, 1 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  20. Adkins G.S., C.R. Nappi, and E. Witten,Nuclear Physics,B228, 552 (1983).

    Article  Google Scholar 

  21. Bade W.L. and H. Jehle, “An Introduction to Spinors,”Reviews of Modern Physics 25, 3, p.714 (1953).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus S. Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, M.S. Clifford residues and charge quantization. AACA 12, 63–90 (2002). https://doi.org/10.1007/BF03161254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161254

Keywords

Navigation