Skip to main content
Log in

Sequential extraction of phosphorus in freshwater wetland and lake sediment: Significance of humic acids

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We modified a five-step sequential extraction scheme originally developed for phosphorus (P) in lake and marine sediments for use in a Danish freshwater wetland rich in organic matter. In contrast to the original scheme, the modification suggests isolation of P associated with aluminum (Al) and iron (Fe) in humic acid complexes. As in the original scheme, discrimination also was obtained between inorganic P associated with reducible forms of Fe and inorganic P associated with Al oxides. This is important because only iron-bound P is likely to be mobilized when wetland sediments become anoxic. Extraction of ironbound P was performed by use of bicarbonate-buffered dithionite and was followed by a NaOH treatment that extracted most organic bound P together with P adsorbed onto clays and Al oxides. The NaOH extract was dark brown, but upon acidification (pH≈1), we produced a precipitate of presumeably humic acids (HA) and a clear supernatant. The precipitate contained up to 30% of the total sediment P and significant fractions of sediment Al and Fe. Ratios of ∼ 12 between HA-Al and HA-P and of ∼ 2.5 between HA-Fe and HA-P suggest that most HA-P was associated with Al in the humic acid complexes. Comparison with sediment from an acid-bog lake suggests that the HA-P fraction might also be important in other freshwater sediments. A similar Al:P and Fe:P ratio was found in the humic acid precipitate from the lake sediment, indicating that the same mechanism was responsible for binding inorganic P in the humic acid complex as in the wetland sediment. When wet sediments were sieved through a 2-mm mesh and handled under N2, the method was highly reproducible, and no further precision could be obtained by grinding the wet sediment prior to extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Andersen, J. M.. 1976. An ignition method for determination of total phosphorus in lake sediments. Water Research 10:329–331.

    Article  CAS  Google Scholar 

  • Barbanti, A., M. C. Bergamini, F. Frascari, S. Miserocchi and G. Rosso. 1994. Critical aspects of sedimentary phosphorus chemical fractionation. Journal of Environmental Quality 23:1093–1102.

    Article  CAS  Google Scholar 

  • Bloom, P. R. 1981. Phosphorus adsorption by an aluminum-peat complex. Soil Science Society of America Journal 45:267–272.

    Article  CAS  Google Scholar 

  • Blume, H. P. and U. Schwertmann. 1969. Genetic evaluation of profile distribution of Aluminum, Iron, and Manganese oxides. Soil Science Society of America Proceedings 33:438–444.

    CAS  Google Scholar 

  • Bowman, R. A. and C. V. Cole. 1978. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Science 125:95–101.

    CAS  Google Scholar 

  • Bremner, J. M. and C. S. Mulvaney. 1982. Nitrogen-total. p. 595–624.In A. L. Page, R.H. Miller, and D.R. Keeney (eds.) Methods of Soil Analysis. Part 2-Chemical and Microbiological Properties. Agronomy 9. American Society of Agronomy, Inc. Soil Science Society of America, Inc., Madison, WI, USA.

    Google Scholar 

  • Chambers, R. M. and W. E. Odum. 1990. Porewater oxidation, dissolved phosphate and the iron curtain. Biogeochemistry 10:37–52.

    Article  CAS  Google Scholar 

  • Chang, S. C. and M. L. Jackson. 1957. Fractionation of soil phosphorus. Soil Science 84:133–144.

    Article  CAS  Google Scholar 

  • Cooke, J. G., L. Stub and N. Mora. 1992. Fractionation of phosphorus in the sediment of a wetland after a decade receiving sewage effluent. Journal of Environmental Quality 21:726–732.

    Article  Google Scholar 

  • De Groot, C. J. and H. L. Golterman. 1993. On the presence of organic phosphate in some Camargue sediments: evidence for the importance of phytate. Hydrobiologia 252:117–126.

    Google Scholar 

  • Franco, D. A. 1986. Epilimnitic phosphorus cycling: influence of humic materials and iron on coexisting major mechanisms. Canadian Journal of Fisheries and Aquatic Sciences 43:302–310.

    Article  Google Scholar 

  • Gerke, J. 1992. Phosphate, aluminium and iron in the soil solution of three different soils in relation to varying concentrations of citric acid. Zeitschrift fur Pflanzenernahrung und Bodenkunde 155:339–343.

    Article  CAS  Google Scholar 

  • Gerke, J. and R. Hermann. 1992. Adsorption of orthophosphate to humic-Fe-complexes and to amorphous Fe-oxide. Zeitschrift fur Pflanzenernahrung und Bodenkunde 155:233–236.

    Article  CAS  Google Scholar 

  • Gerke, J. and A. Jungk. 1991. Separation of phosphorus bound to organic matrices from inorganic phosphorus in alkaline soil extracts by ultrafiltration. Communications in Soil Science and Plant Analysis 22:1621–1630.

    Article  CAS  Google Scholar 

  • Hartikainen, H. 1979. Phosphorus and its reactions in terrestrial soils and lake sediments. Journal of the Scientific Agricultural Society of Finland 51:537–624.

    CAS  Google Scholar 

  • Haynes, R. J. and R. S. Swift. 1989. The effects of pH and drying on adsorption of phosphate by aluminium-organic matter associations. Journal of Soil Science 40:773–781.

    Article  CAS  Google Scholar 

  • Hieltjes, A. H. M. and L. Lijklema. 1980. Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality 9:405–407.

    Article  CAS  Google Scholar 

  • Jensen, H. S. and B. Thamdrup. 1993. Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253:47–59.

    Article  CAS  Google Scholar 

  • Jones, R. I., P. J. Shaw and H. D. Haan. 1993. Effects of dissolved humic substances on the speciation of iron and phosphate at different pH and ionic strength. Environmental Science and Technology 27:1052–1059.

    Article  CAS  Google Scholar 

  • Koch, M. S. and K. R. Reddy. 1992. Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Science Society of America Journal 56:1492–1499.

    Google Scholar 

  • Koenings, J. P. and E. E. Hooper. 1976. The influence of colloidal organic matter on iron and iron-phosphorus cycling in a bog lake. Limnology and Oceanography 21:684–696.

    Article  CAS  Google Scholar 

  • Kodama, H. and M. Schnitzer. 1977. Effect of fulvic acid on the crystallization of Fe(III) oxides. Geoderma 19:279–291.

    Article  CAS  Google Scholar 

  • Koroleff, F. 1983. Determination of nutrients. p. 125–139.In K. Grasshoff, M. Ehrhardt, and K. Kremling (eds.) Methods of Seawater Analysis. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Kostka, J. E. and G. W. Luther III. 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica et Cosmochimica Acta 58:1701–1710.

    Article  CAS  Google Scholar 

  • Lijklema, L. 1980. Interaction of orthophosphate with iron(III) and aluminum hydroxides. Environmental Science and Technology 14:537–541.

    Article  CAS  Google Scholar 

  • Lovley, D. R. and E. J. P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology 51:683–689.

    PubMed  CAS  Google Scholar 

  • Madrid, L. and P. D. Arambarri. 1985. Adsorption of phosphate by two iron oxides in relation to their porosity. Journal of Soil Science 36:523–530.

    Article  CAS  Google Scholar 

  • McKeague, J. A. and J. H. Day. 1966. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating varicus classes of soils. Canadian Journal of Soil Science 46:13–22.

    Article  CAS  Google Scholar 

  • Malcolm, R. 1990. The uniqueness of humic substances in each of soil, stream and marine environments. Analytica Chimica Acta 232:19–30.

    Article  CAS  Google Scholar 

  • Moore, P. A. and K. R. Reddy. 1994. Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida. Journal of Environmental Quality 23:955–964.

    Article  CAS  Google Scholar 

  • Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36.

    Article  CAS  Google Scholar 

  • Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter, p. 539–579.In A. L. Page, R.H. Miller, and D.R. Keeney (eds.) Methods of Soil Analysis. Part 2-Chemical and Microbiological Properties. Agronomy 9. American Society of Agronomy, Inc. Soil Science Society of America, Inc., Madison, WI, USA.

    Google Scholar 

  • Odgaard, B. V. 1993. The sedimentary record of spheroidal carbonaceous fly-ash in shallow Danish lakes. Journal of Paleolimnology 8:171–187.

    Google Scholar 

  • Olsen, S. R. and L. E. Sommers. 1982. Phosphorus. p. 403–430.In A. L. Page, R.H. Miller, and D.R. Keeney (eds.) Methods of Soil Analysis Part 2-Chemical and Microbiological Properties Agronomy 9. American Society of Agronomy, Inc. Soil Science Society of America, Inc., Madison, WI, USA.

    Google Scholar 

  • Oluyedun, O. A., S. O. Ajayi, and G. W. van Loon. 1991. Methods for fractionation of organic phosphorus in sediments. The Science of the Total Environment 106:243–252.

    Article  CAS  Google Scholar 

  • Phillips, E. J. P. and D. R. Lovley. 1987. Determination of Fe(III) and Fe(II) in oxalate extracts of sediment. Soil Science Society of America Journal 51:938–941.

    Article  CAS  Google Scholar 

  • Potter, R. L., C. F. Jordan, R. M. Guedes, G. J. Batmanian, and X. G. Han. 1991. Assessment of a phosphorus fractionation method for soils: problems for further investigation. Agriculture. Ecosystems and Environment 34:453–463.

    Article  CAS  Google Scholar 

  • Psenner, R., R. Pucsko, and M. Sager. 1984. Die fractionerung organisher und anorganisher Phosphorverbindungen von Sedimenten. Archiv fur Hydrobiologie—Supplementband 70:111–155.

    CAS  Google Scholar 

  • Psenner, R. and R. Pucsko. 1988. Phosphorus fractionation: advantages and limits of the method for study of sediment P orgins and interactions. Archiv fur Hydrobiologie Beiheft—Ergebnisse der Limnologie 30:43–59.

    CAS  Google Scholar 

  • Psenner, R., B. Boström, M. Dinka, K. Pettersson, R. Pucsko, and M. Sager. 1988. Fractionation of phosphorus in suspended matter and sediment. Archiv fur Hydrobiologie Beiheft—Ergebnisse der Limnologie 30:98–110.

    Google Scholar 

  • Rapin, F., A. Tessier, P. G. C. Campbell, and R. Carignan. 1986. Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure. Environmental Science and Technology 20:836–840.

    Article  CAS  Google Scholar 

  • Richardson, C. 1985. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228:1424–1427.

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute. 1988. SAS User’s Guide: STAT. SAS Institute Inc. Cary, NC, USA.

    Google Scholar 

  • Stevens, R. J. and B. M. Stewart. 1982. Concentration, fractionation and characterisation of soluble organic phosphorus in river water entering Lough Neagh. Water Research 16:1507–1519.

    Article  CAS  Google Scholar 

  • Stookey, L. L. 1970. Ferrozine—a new spectrophotometric reagent for iron. Analytical Chemistry 42:779–781.

    Article  CAS  Google Scholar 

  • Stumm, W. and J. J. Morgan. 1981: Aquatic Chemistry. John Wiley and Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Sørensen, J. 1982. Reduction of ferrie iron in anaerebic, marine sediment and interaction with reduction of nitrate and sulfate. Applied and Environmental Microbiology 43:319–324.

    PubMed  Google Scholar 

  • Walbridge, M. R. and J. Struthers. 1993. Phosphorus retention in non-tidal palustrine forested wetlands of the mid-atlantic region. Wetlands 13:89–94.

    Article  Google Scholar 

  • Walbridge, M. R., C. J. Richardson, and W. T. Swank. 1991. Vertical distribution of biological and geochemical phosphorus subcycles in two Appalachian forest soils. Biogeochemistry 13:61–85.

    Article  CAS  Google Scholar 

  • White, R. E. and G. W. Thomas. 1981. Hydrolysis of aluminium on weakly acidic organic exchangers: implications for phosphate adsorption. Fertilizer Research 2:159–167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paludan, C., Jensen, H.S. Sequential extraction of phosphorus in freshwater wetland and lake sediment: Significance of humic acids. Wetlands 15, 365–373 (1995). https://doi.org/10.1007/BF03160891

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160891

Key Words

Navigation