Skip to main content
Log in

Grundlagen der Wahrscheinlichkeitsrechnung für iterative Decodierverfahren

Fundamentals of probability calculus for iterative decoding

  • Originalarbeiten
  • Published:
e&i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Zusammenfassung

In dieser Übersichtsarbeit werden die Grundgleichungen der iterativen Decodierung mittels elementarer Verfahren der Wahrscheinlichkeitsrechnung abgeleitet und zusammengestellt. Dabei zeigt sich, dass durch direkte Repräsentation einer Symbolzuverlässigkeit mittels der a-posteriori-Wahrscheinlichkeit diese Beziehungen einfach darzustellen sind, und die Prinzipien der iterativen Decodierung dadurch leicht fasslich formuliert werden können. Die Vorteile anderer gebräuchlicher Methoden zur Repräsentation von Symbolzuverlässigkeiten und deren Wechselbeziehungen werden diskutiert.

Abstract

In this tutorial paper the basic equations for iterative decoding are derived by elementary methods of probability calculus. It is shown that a representation of symbol reliabilities directly by means of a-posteriori probabilities simplifies derivations and makes it easy to understand the principles of iterative decoding. The advantages of other, commonly used descriptions and their interrelationships are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Bahl, L. R., Cocke, J., Jelinek, F., Raviv, J. (1974): Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory, vol. 20: 284–287.

    Article  MATH  MathSciNet  Google Scholar 

  • Benedetto, S., Montorsi, G. (2002): The new frontier of channel coding: concatenated codes with interleaver and iterative decoding. In: 4th International ITG Conference on Source and Channel Coding, Berlin, Germany, January 2002: 35–45.

  • Berrou, C., Glavieux, A., Thitimajshima, P. (1993): Near Shannon limit error-correcting coding and decoding: turbo-codes. In: Proc. IEEE Int. Conf. Commun. (ICC). Geneva, Switzerland: 1064–1070.

  • Chung, S.-Y., Forney, G. D., Richardson, T. J., Urbanke, R. (2001): On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications Letters, 5: 58–60.

    Article  Google Scholar 

  • Costello, D. J., Banerjee, A., Fuja, T. E., Massey, P. C. (2002): Some reflections on the design of bandwidth efficient turbo codes. In: 4th International ITG Conference on Source and Channel Coding, Berlin, Germany, January 2002: 357–363.

  • Fischer, R. F. H. (2002): Precoding and signal shaping for digital transmission. New York: John Wiley & Sons.

    Book  Google Scholar 

  • Gallager, R. G. (1962): Low density parity check codes. IRE Trans. Info. Theory, IT-8: 21–28.

    Article  MathSciNet  Google Scholar 

  • Haykin, S. (1996): Adaptive filter theory. 3rd edition. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Hüttinger, S., Huber, J. (2002): „Multiple-Turbo-Codes” with transfer characteristics of component codes. In: Proceedings of the 36th Annual Conference on Information Sciences and Systems (CISS 2002), Princeton, NJ, March 2002.

  • Hüttinger, S., ten Brink, S., Huber, J. (2001): Turbo-Code representation of RA-Codes and DRS-Codes for reduced decoding complexity. In: Proceedings of the 35th Annual Conference onf Information Sciences and Systems (CISS 2001), Baltimore, Maryland: 118–123.

  • Massey, P. C., Costello Jr., D. J. (2001): New low-complexity turbo-like codes. In: IEEE Information Theory Workshop, Cairs, Australia, September 2001.

  • Peterson, W. W., Weldon Jr., E. J. (1972): Error-correcting codes. 2nd edition. Cambridge, Massachusetts: MIT Press.

    MATH  Google Scholar 

  • Robertson, P., Höher, P., Villebrun, E. (1997): Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding. Europ. Trans. Telecommun. (ETT), 8(2): 119–125.

    Article  Google Scholar 

  • Shannon, C. E. (1948): A mathematical theory of communication. Bell System Technical Journal, vol. 27, part I: 379–427; part II: 623–656.

    MATH  MathSciNet  Google Scholar 

  • Tanner, R. M. (1981): A recursive approach to low complexity codes. IEEE Trans. Int. Theory, 27(5): 533–547.

    Article  MATH  MathSciNet  Google Scholar 

  • ten Brink, S. (2000): A rate one-half code for approaching the Shannon limit by 0.1 db. IEE Electronics Letters, 36(15): 1293–1294.

    Article  Google Scholar 

  • Wachsmann, U., Fischer, R. F. H., Huber, J. B. (1999): Multilevel codes: theoretical concepts and practical design rules. IEEE Trans. Inf. Theory, IT-45(5): 1361–1391.

    Article  MATH  MathSciNet  Google Scholar 

  • Wachsmann, U., Huber, J. B. (1995): Power and bandwidth efficient digital communication using turbo codes in multilevel codes. Europ. Trans. Telecommun. (ETT), Sept.–Oct. 1995, 6(5): 557–567.

    Article  Google Scholar 

  • Wiberg, N. (1996): Codes and decoding on general graphs. PhD thesis, Dept. of Electrical Engineering, Linköping, Sweden, 1996. Linköping studies in Science and Technology. Dissertation No. 440.

    Google Scholar 

  • Worm, A., Höher, P., Wehn, N. (2000): Turbo-decoding without SNR estimation. IEEE Commun. Letter, 4(6): 193–195.

    Article  Google Scholar 

  • Wozencraft, J. M., Jacobs, I. M. (1965): Principles of communication engineering. New York: John Wiley & Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, J. Grundlagen der Wahrscheinlichkeitsrechnung für iterative Decodierverfahren. Elektrotech. Inftech. 119, 386–394 (2002). https://doi.org/10.1007/BF03160509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160509

Schlüsselwörter

Keywords

Navigation