Skip to main content
Log in

Molecular mechanisms of glial swelling in vitro

  • Original Articles
  • Published:
Neurochemical Pathology

Abstract

The pathophysiological chain of events occurring during cerebral ischemia is still poorly understood on a molecular level. Therefore, an in vitro model to study glial swelling mechanisms, using C6 glial cells under controlled extracellular conditions, has been established. Flow cytometry serves to determine even small cell volume changes. In this report, the effects of anoxia and acidosis on glial swelling are summarized. Anoxia alone, or in combination with iodoacetate to inhibit anaerobic glycolysis, did not cause an increase of glial volume for up to 2 h. Acidification of the incubation medium below pH 6.8, on the other hand, was immediately followed by cell swelling to 115% of normal. Amiloride or the absence of bicarbonate and Na+ in the medium significantly reduced glial swelling. The data support the contention that swelling results from an activation of the Na+/H+-antiporter to control intracellular pH. It is suggested that swelling in an ischemic penumbra is promoted by this mechanism. Therapeutic approaches to control cerebral pH might be useful to protect brain tissue in cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames A. and Nesbett F. B. (1983a) Pathophysiology of ischemic cell death. I. Time of onset of irreversible damage; Importance of different components of the ischemic insult.Stroke 14, 219–226.

    PubMed  Google Scholar 

  • Ames A. and Nesbett F. B. (1983b) Pathophysiology of ischemic cell death. II. Changes in plasma membrane permeability and cell volume.Stroke 14, 227–233.

    PubMed  Google Scholar 

  • Arieff A. I. and Kleeman C. R. (1974) Cerebral edema in diabetic comas. II. Effects of hyperosmolality, hyperglycemia and insulin in diabetic rabbits.J. Clin. Endocrinol. Metabol.,38, 1057–1067.

    Article  CAS  Google Scholar 

  • Astrup J., Symon L., Branston N. M., and Lassen N. A. (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia.Stroke 8, 51–57.

    CAS  PubMed  Google Scholar 

  • Baethmann A. and Van Harreveld A. (1973) Water and electrolyte distribution in grey matter rendered edematous with a metabolic inhibitor.J. Neuropathol. Exp. Neurol. 32, 408–423.

    Article  CAS  PubMed  Google Scholar 

  • Baethmann A. and Sohler K. (1975) Electrolyte- and fluid-spaces of rat brain insitu after infusion with dinitrophenol.J. Neurobiol. 6, 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Baethmann A. (1978) Pathophysiological and pathochemical aspects of cerebral edema.Neurosurg. Res. 1, 85–100.

    Article  Google Scholar 

  • Baethmann A., Oettinger W., Rothenfusser W., Kempski O., Unterberg A., and Gieger R. (1980) Brain edema factors: Current state with particular reference to plasma constituents and glutamate.Adv. Neurol.,28, 171–195.

    CAS  PubMed  Google Scholar 

  • Baethmann A., Kempski O., Schneider S., Zimmer M., Neu A., v. Rosen F., and Jansen M. (1985) Normal and abnormal neuronal and glial volume,Brain Insults in Infants and Children (James H. E., Anas N. G., and Perkin R. M., eds.), Grune & Stratton, Orlando; FL, pp. 25–46.

    Google Scholar 

  • Benda P., Lightbody J., Sato G., Levine L., and Sweet W. (1968) Differentiated rat glial cell strain in tissue culture.Science 161, 370, 371.

    Article  CAS  PubMed  Google Scholar 

  • Bissell M. G., Rubinstein L. J., Bignami A., and Herman M. M. (1974) Characteristics of the rat C-6 glioma maintained in organ culture systems. Production of glial fibrillary acidic protein in the absence of gliofibrillogenesis.Brain Res. 82, 77–89.

    Article  CAS  PubMed  Google Scholar 

  • Cala P. M. (1983a) Cell volume regulation by amphiuma red blood cells. The role of Ca++ as a modulator of alkali metal/H+-exchange.J. Gen. Physiol. 82, 761–784.

    Article  CAS  PubMed  Google Scholar 

  • Cala P. M. (1983b) Volume regulation by red blood cells. Mechanisms of ion transport.Molec. Physiol. 4, 33–52.

    CAS  Google Scholar 

  • Chaussy L., Baethmann A., and Lubitz W. (1981) Electrical sizing of nerve and glia cells in the study of cell volume regulation,Cerebral Microcirculation and Metabolism (Cervos-Navarro J. and Fritschka E., eds.), Raven, New York, NY, pp. 29–40.

    Google Scholar 

  • Cornog J. L., Gonatas N. K., and Feierman J. R. (1967) Effects of intracerebral injection of ouabain on the fine structure of rat cerebral cortex.Am. J. Pathol. 51, 572–590.

    Google Scholar 

  • Fisher R. S., Persson B.-E., and Spring K. R. (1981) Epithelial cell volume regulation: Bicarbonate dependence.Science 214, 1357–1359.

    Article  CAS  PubMed  Google Scholar 

  • Go K. G. (1986) Disturbances of extracellular homeostasis after a primary insult as a mechanism in secondary brain damage,Mechanisms of Secondary Brain Damage (Baethmann A., Go K. G., and Unterberg A., eds.), Plenum, New York, NY, pp. 127–138.

    Google Scholar 

  • Grinstein S., Clarke C. A., Dupre A., and Rothstein A. (1982) Volume-induced increase of anion permeability in human lymphocytes.J. Gen. Physiol. 80, 801–823.

    Article  CAS  PubMed  Google Scholar 

  • Grinstein S., Cohen S., and Rothstein A. (1984) Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+-antiport.J. Gen. Physiol. 83, 341–369.

    Article  CAS  PubMed  Google Scholar 

  • Grinstein S., Cohen S., Goetz J. D., and Rothstein A. (1985) Na+/H+-exchange in volume regulation and cytoplasmic pH homeostasis in lymphocytes.Fed. Proc. 44, 2508–2512.

    CAS  PubMed  Google Scholar 

  • Grinstein A. and Rothstein A. (1986) Mechanisms of regulation of the Na+/H+-exchanger.J. Membrane Biol. 90, 1–12.

    Article  CAS  Google Scholar 

  • Hoffmann E. K. and Hendil K. B. (1976) The role of amino acids and taurine in isoosmotic intracellular regulation in Ehrlich ascites mouse tumor cells.J. Comp. Physiol. 108, 279–286.

    CAS  Google Scholar 

  • Kachel V. (1976) Basic principles of electrical sizing of cells and particles and their realization in the new instrument “Metricell”.J. Histochem. Cytochem. 24, 211–230.

    CAS  PubMed  Google Scholar 

  • Kempski O. (1982a) Die Lokalisation des Glutamat-induzierten Hirnödems.Thesis, Ludwig-Maximilians University, Munich, West Germany.

    Google Scholar 

  • Kempski O., Gross U., and Baethmann, A. (1982b) An in vitro model of cytotoxic brain edema: Cell volume and metabolism of cultivated glial- and nerve-cells.Adv. Neurosurg. 10, 254–258.

    Google Scholar 

  • Kempski O., Chaussy L., and Gross U., Zimmer M., and Baethmann A. (1983) Volume regulation and metabolism of suspended C6 glioma cells: An in vitro model to study cytotoxic brain edema.Brain Res. 279, 217–228.

    Article  CAS  PubMed  Google Scholar 

  • Kempski O. (1986a) Cell swelling mechanisms in brain,Mechanisms of Secondary mechanisms causing ischemic cell swelling in vitro, Pharmacology of Cerebral Ischemia (Krieglstein J., ed.), Elsevier, Amsterdam, pp. 131–139.

    Google Scholar 

  • Kempski O., Zimmer M., Neu A., v. Rosen F., Jansen M., and Baethmann A. (1987) Control of glial cell volume in anoxia. In vitro studies on ischemic cell swelling.Stroke 18, 623–628.

    CAS  PubMed  Google Scholar 

  • Kempski O., Staub F., Jansen M., Schödel F., and Baethmann A. (1988) Glial swelling during extracellular acidosis in vitro.Stroke 19, 385–392.

    CAS  PubMed  Google Scholar 

  • Krane E. J., Rockoff M. A., Wallman J. K., and Wolfsdorf J. E. (1985) Subclinical brain swelling in children during treatment of diabetic ketoacidosis.N. Engl. J. Med. 312, 1147–1151.

    CAS  PubMed  Google Scholar 

  • Kregenow F. M. (1971) The response of duck erythrocytes to nonhemolytic hypotonic media: Evidence for a volume controlling mechanism.J. Gen. Physiol. 58, 372–395.

    Article  CAS  PubMed  Google Scholar 

  • Labourdette G. and Mandel P. (1978) S-100 protein in monolayer cultures of glial cells: Basal level in primary and secondary cultures.Biochem. Biophys. Res. Comm. 85, 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  • Mahnensmith R. L. and Aronson P. S. (1985) The plasma membrane sodiumhydrogen exchanger and its role in physiological and pathophysiological processes.Circ. Res. 56, 773–788.

    CAS  PubMed  Google Scholar 

  • Negendank W. and Shaller C. (1982) The effects of temperature and ouabain on steady-state Na and K exchanges in human lymphocytes.J. Cell Physiol. 113, 440–454.

    Article  CAS  PubMed  Google Scholar 

  • Nicklas W. J. and Browning E. T. (1983) Glutamate uptake and metabolism in C-6 glioma cells: Alterations by potassium ion and dibutyryl cAMP.J. Neurochem. 41, 179–187.

    CAS  PubMed  Google Scholar 

  • Pappius H. M. (1979) Evolution of edema in experimental cerebral infarction,Cerebrovascular Diseases (Price T. R. and Nelson E., eds.), Raven, New York, NY, pp. 131–139.

    Google Scholar 

  • Pfeiffer S. E., Betschart B., Cook J., Mancini P., and Morris R. (1977) Glial cell lines,Cell Tissue, and Organ Cultures in Neurobiology (Fedoroff S., Hertz L., eds.), Academic, New York, NY, pp. 287–346.

    Google Scholar 

  • Pitts R. F., Ayer J. L. and Schiess W. A. (1949) The renal regulation of acid base balance in man. III. The reabsorption and excretion of bicarbonate.J. Clin. Invest. 28, 35–44.

    Article  CAS  Google Scholar 

  • Rothenfusser W. (1982) Die Bedeutung von Glutamat als Hirnödemfaktor.Thesis, Ludwig-Maximilians University, Munich, Federal Republic of Germany.

    Google Scholar 

  • Sapirstein V. S. and Benos D. J. (1984) Activation of amiloride-sensitive sodium transport in C6 glioma cells.J. Neurochem. 43, 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  • Siesjö B. K. (1985) Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology,Molecular Mechanisms of Ischemic Brain Damage (Kogure K., Hossmann K.-A., Siesjö B. K. and Welsh F. A., eds.), Elsevier, Amsterdam,Progr. Brain. Res. 63, 121–154.

    Chapter  Google Scholar 

  • Tasaki I. and Iwasa K. (1980) Swelling of nerve fibers during action potentials.Upsala J. Med. Sci. 85, 211–215.

    Article  CAS  PubMed  Google Scholar 

  • Tasaki I., Nakaye T., and Byrne P. M. (1985) Rapid swelling of neurons during synaptic transmission in the bullfrog sympathetic ganglion.Brain Res. 331, 363–365.

    Article  CAS  PubMed  Google Scholar 

  • Unterberg A., Maier-Hauff K., Dautermann C., Hack U., Schürer L., and Baethmann A. (1986) Role of mediator compounds in secondary brain damage—current evidence,Mechanisms of Secondary Brain Damage (Baethmann A., Go K. G., and Unterberg A., eds.), Plenum, New York, NY, pp. 139–150.

    Google Scholar 

  • Van Harreveld A. (1982) The extracellular space in the vertebrate central nervous system,The Structure and Function of Nervous Tissue (Bourne G. H., ed.), Academic, New York, NY, pp. 447–511.

    Google Scholar 

  • Van Harreveld A. and Fifkova E. (1974) Involvement of glutamate in memory formation.Brain Res. 81, 455–467.

    Article  PubMed  Google Scholar 

  • Van Harreveld A. and Fifkova E. (1975) Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation.Exp. Neurol. 49, 736–749.

    Article  PubMed  Google Scholar 

  • Zimmer M., Kempski O., Neu A., v. Rosen F., and Baethmann A. (1984) Anoxic incubation of suspended glial cells. An in-vitro model of cerebral anoxia to study cytotoxic brain edema.Adv. Neurosurg. 12, 271–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft: Ba 452/6-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempski, O., Staub, F., Rosen, F.V. et al. Molecular mechanisms of glial swelling in vitro. Neurochemical Pathology 9, 109–125 (1988). https://doi.org/10.1007/BF03160357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160357

Index Entries

Navigation