Skip to main content
Log in

Glycolipids and gliomas

A review

  • Original Articles
  • Published:
Neurochemical Pathology

Abstract

Several aspects of the relationships between glycolipids, gliomas, and problems involved in studying these are reviewed. Major problems that currently must be addressed include developing a classification scheme that more accurately predicts the biological behavior of these tumors, obtaining samples representative of the patient’s glioma, and identifying appropriate control specimens. Results of analytical studies indicate that the patterns of gangliosides in human glioma tissues generally correlate with the degree of histological malignancy. Some gliomas contain unusual, and perhaps unique, glycolipids. Exogeneous glycosphingolipids can alter cell shape and growth, which may involve modulation of growth factor receptors and protein kinases. Tumor glycolipids may also modulate immune functions in patients harboring gliomas. Transfection of nonneural cells with some oncogenes can alter glycolipid metabolism, which may be part of the mechanism through which these oncogenes exert their effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe T. and Norton W. T. (1974) The characterization of sphingolipids from neurons and astroglia of immature rat brain.J. Neurochem. 23, 1025–1036.

    PubMed  CAS  Google Scholar 

  • Aruna R. M. and Basu D. (1976) Glycolipid metabolism in tumor of central nervous system.Indian J. Biochem. & Biophys. 13, 158–160.

    CAS  Google Scholar 

  • Bailey P. and Cushing H. (1926)A classification of the glioma group on a histologic basis with a correlated study of prognosis. Lippincott, Philadelphia.

    Google Scholar 

  • Bascom C. C., Sharifi B. G., Melkerson L. J., Rintoul D. A., and Johnson T. C. (1985) The role of gangliosides in the interaction of a growth inhibitor with mouse LM cell.J. Cell. Physiol. 125, 427–435.

    PubMed  CAS  Google Scholar 

  • Basu S. K., Whisler R. L., and Yates A. J. (1986) Effects of lectin activation on sialyltransferase activities in human lymphocytes.Biochem. 25, 2577–2581.

    CAS  Google Scholar 

  • Berra B., Gaini S. M., and Riboni L. (1985) Correlation between ganglioside distribution and histological grading of human astrocytomas.Int. J. Cancer 36, 363–366.

    PubMed  CAS  Google Scholar 

  • Bigner S. H., Burger P. C., Wong A. J., Werner M. H., Hamilton S. R., Muhlbaier L. H., Vogelstein B., and Bigner D. D. (1988) Gene amplification in malignant human gliomas: Clinical and histopathologic aspects.J. Neuropathol. Exp. Neurol. 47, 191–205.

    PubMed  CAS  Google Scholar 

  • Blinn N. Muller-Brechlin R., Carstens C., Meese E., and Zang K. D. (1987) Enhanced expression of four cellular oncogenes in a human glioblastoma cell line.Cancer Genet. Cytogenet. 25, 285–292.

    Google Scholar 

  • Brady R. O. and Fishman P. H. (1974) Biosynthesis of glycolipids in virus-transformed cells.Biochim. Biophys. Acta 355, 121–148.

    PubMed  CAS  Google Scholar 

  • Bremer E. G. and Hakomori S.-I. (1982) GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: ganglioside may regulate growth factor receptor function.Biochem. Biophys. Res. Comm 106, 711–718.

    PubMed  CAS  Google Scholar 

  • Bremer E. G., Schlessinger J., and Hakomori S.-I. (1986) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor.J. Biol. Chem. 261, 2434–2440.

    PubMed  CAS  Google Scholar 

  • Bremer E. G., Hakamori S.-I., Bowen-Pope D. F., Raines E., and Ross R. (1984) Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation.J. Biol. Chem. 259, 6818–6825.

    PubMed  CAS  Google Scholar 

  • Chan K.-F. J. (1987a) Ganglioside-modulated protein phosphorylation in myelin.J. Biol. Chem. 262, 2415–2422.

    PubMed  CAS  Google Scholar 

  • Chan K.-F. J. (1987b) Ganglioside-modulated protein phosphorylation.J. Biol. Chem. 262, 5248–5255.

    PubMed  CAS  Google Scholar 

  • Chow K.-H., Ambers L. S. A., and Jungalwala F. B. (1979) Ganglioside composition of chemically induced rat neural tumors and characterization of hematoside from neurinomas.J. Neurochem. 33, 863–873.

    Google Scholar 

  • Coleman M. T., Allred L. E., Hart R. W., and Yates A. J. (1980) Relationship between gangliosides and doubling times in cultured human brain and brain tumor cells.Cancer Lett. 8, 255–262.

    PubMed  CAS  Google Scholar 

  • Davis C. W. and Daly J. W. (1980) Activation of rat cerebral cortical 3′,5′-cyclic nucleotide phosphodiesterase activity by gangliosides.Molec. Pharmacol. 17, 206–211.

    CAS  Google Scholar 

  • Dawson G. (1979) Regulation of glycosphingolipid metabolism in mouse neuroblastoma and glioma cells lines.J. Biol. Chem. 254, 155–162.

    PubMed  CAS  Google Scholar 

  • Dawson G., Kemp S. F., Stoolmiller A. C., and Dorfman A. (1971) Biosynthesis of glycosphingolipids by mouse neuroblastoma (NB41A), rat glia (RGC-6) and human glia (CHB-4) in cell culture.Biochem. Biophys. Res. Comm. 44, 687–694.

    PubMed  CAS  Google Scholar 

  • Duffard R. O., Fishman P. H., Bradley R. M., Lauter C. J., Brady R. O., and Trams E. G. (1977) Ganglioside composition and biosynthesis in cultured cells derived from CNS.J. Neurochem. 28, 1161–1166.

    PubMed  CAS  Google Scholar 

  • Eto Y. and Shinoda S. (1982) Gangliosides and neutral glycosphingolipids in human brain tumors: Specificity and their significance.Adv. Exp. Med. Biol. 152, 279–290.

    PubMed  CAS  Google Scholar 

  • Fredman P., von Holst H., Collins P., Granholm L., and Svennerholm L. (1988) Sialyllactotetraosylceramide, a ganglioside marker for human malignant gliomas.J. Neurochem. 50, 912–919.

    PubMed  CAS  Google Scholar 

  • Fujimoto M., Weaker F. J., Hervert D. C., Sharp Z. D., Sheridan P. J., Story J. L. (1988) Expression of three viral oncogenes (v-sis-, v-myc, v-fos) in primary human brian tumors of neuroectodermal origin.Neurology 38, 289–293.

    PubMed  CAS  Google Scholar 

  • Garson J. A., McIntyre, and Kemshead J. T. (1985) N-myc amplification in malignant astrocytoma,Lancet, Sept. 28, 718–719.

    Google Scholar 

  • Gilles F. H., Leviton A., Hedley-Whyte E. T., and Jasnow M. (1983) Perspectives in Pathology. Childhood brain tumor update.Hum. Path. 14, 834–845.

    PubMed  CAS  Google Scholar 

  • Goldenring J. R., Otis L. C., Yu R. K., and DeLorenzo R. J. (1985) Calcium/ganglioside-dependent protein kinase activity in rat brain membrane.J. Neurochem. 44, 122–1234.

    Google Scholar 

  • Gonwa T. A., Westrick M. A., and Macher B. A. (1984) Inhibition of mitogen-and antigen-induced lymphocyte activation by human leukemia cell gangliosides.Cancer Res. 44, 3467–3470.

    PubMed  CAS  Google Scholar 

  • Hakomori S.-I. (1975) Structures and organization of cell surface glycolipids dependency on cell growth and malignant transformation.Biochim. Biophys. Acta 417, 55–89.

    PubMed  CAS  Google Scholar 

  • Hakomori S.-I. (1981) Glycosphingolipids in cellular interaction, differentiation, and oncogenesis.Ann. Rev. Biochem. 50, 733–764.

    PubMed  CAS  Google Scholar 

  • Hakomori S.-I. (1985) Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives.Cancer Res. 45, 2405–2414.

    PubMed  CAS  Google Scholar 

  • Hakomori S.-I. (1985) Glycosphingolipids as differentiation and tumor markers and as regulators of cell proliferation, inMolecular Biology of Tumor Cells (B. Wahren et al., eds.), pp. 139–156, Raven, New York.

    Google Scholar 

  • Hakomori S.-I. (1986) Tumor-associated glycolipid antigens, their metabolism and organization.Chem. and Phys. Lipids 42, 209–233.

    CAS  Google Scholar 

  • Hanai N., Nores G., Torres-Mendez C.-R., Hakomori S.-I. (1987) Modified ganglioside as a possible modulator of transmembrane signaling mechanism through growth factor receptors: A preliminary note.Biochem. Biophys. Res. Comm. 147, 127–134.

    PubMed  CAS  Google Scholar 

  • Henn W., Blin N., and Zang K. D. (1986) Polysomy of chromosome 7 is correlated with overexpression of theerbB oncogene in human glioblastoma cell lines.Hum. Genet. 74, 104–106.

    PubMed  CAS  Google Scholar 

  • Hersey P., Schibeci S. D., Townsend P., Burns C., Cheresh D. A. (1986) Potentiation of lymphocyte responses by monoclonal antibodies to the ganglioside GD3.Cancer Res. 46, 6083–6090.

    PubMed  CAS  Google Scholar 

  • Hoffman L. M., Brooks S. E., and Schneck L. (1981) Human fetal brain cells in culture increase in GM2 ganglioside after SV-40 transformation.Biochim. Biophys. Acta. 665, 359–361.

    PubMed  CAS  Google Scholar 

  • Icard-Liepkalns C., Liepkalns V. A., Yates A. J., and Stephens R. E. (1982) Cell cycle phases of novel human neural cell line and the effect of exogenous gangliosides.Biochem. Biophys. Res. Comm. 105, 225–230.

    PubMed  CAS  Google Scholar 

  • Icard-Liepkalns C., Liepkalns V. A., Yates A. J., Rodriguez Z. R., and Stephens R. E. (1982) Effect of exogenous gangliosides on human neural cell division.J. Cell. Physiol. 113, 186–191.

    PubMed  CAS  Google Scholar 

  • Jackson K. M., Yates A. J., Orosz C. G., and Whitacre C. C. (1987) Gangliosides suppress the proliferation of autoreactive cells in experimental allergic encephalomyelitis: Ganglioside effects of IL-2 activity.Cell. Immunol. 104, 169–181.

    PubMed  CAS  Google Scholar 

  • Kakari S., Avgoustatos G., Ferderigos A. S., Poulaki E., Sakka P., Karamplianis A., Konstadinidis E., and Constantopoulos G. (1984) Total and lipid-bound sialic acid in the cerebrospinal fluid of patients with brain tumors.Anticancer Res. 4, 313–316.

    PubMed  CAS  Google Scholar 

  • Kazimer, R. L., Whisler R. L., Stephens R. E., Pearl D. K., and Yates A. J. Sensitivity of glioma and fetal brain cell lines to natural killer cytolysis in monolayer assay.J. Neurooncol., in press.

  • Keenan T. W., Schmid E., Franke W. W., and Wiegandt H. (1975) Exogenous glycosphingolipids suppress growth rate of transformed and untransformed 3T3 mouse cells.Exp. Cell. Res. 92, 259–270.

    PubMed  CAS  Google Scholar 

  • Kernohan J. W., Mabon R. F., Svien H. J., and Adson A. W. (1949) A simplified classification of the gliomas.Proceedings of the Staff Meetings of the Mayo Clinic 24, 71–75.

    CAS  Google Scholar 

  • Kinders R. J., Rintoul D. A., and Johnson T. C. (1982) Ganglioside GM1 sensitizes tumor cells to growth inhibitory glycopeptides.Biochem. Biophys. Res. Commun. 107, 663–669.

    PubMed  CAS  Google Scholar 

  • Kinzler K. W., Bigner S. H., Bigner D. D., Trent J. M., Law M. L., O’Brien S. J., Wong A. J., and Vogelstein B. (1987). Identification of an amplified, highly expressed gene in a human glioma.Science 236, 70–73.

    PubMed  CAS  Google Scholar 

  • Kloppel T. M., Keenan T. W., Freeman M. J., and Morre D. J. (1977) Glycolipid-bound sialic acid in serum: increased levels in mice and humans bearing mammary carcinomas.Proc. Natl. Acad. Sci. USA 74, 3011–3013.

    PubMed  CAS  Google Scholar 

  • Kojima H., Tsuchiya S., Sekiguchi K., Gelinas R., and Hakomori S.-I. (1987) Predefined gene transfer for expression of a glycosphingolipid antigen by transfection with a cosmid genomic library prepared from a cell line in which the specific glycosphingolipid is highly expressed.Biochem. Biophys. Res. Comm. 143, 716–722.

    PubMed  CAS  Google Scholar 

  • Kostic D., and Buchheit F. (1970) Gangliosides in human brain tumors.Life Sci. 9, 589–596.

    CAS  Google Scholar 

  • Kreutter D. Kim J. Y. H., Goldenring J. R., Rasmussen H., Ukomadu C., Delorenzo R. J., and Yu R. K. (1987) Regulation of protein kinase C activity by gangliosides.J. Biol. Chem. 262, 1633–1637.

    PubMed  CAS  Google Scholar 

  • Ladisch S., Kitada S., and Hays E. F. (1987) Gangliosides shed by tumor cells enhance tumor formation in mice.J. Clin. Invest. 79, 1879–1882.

    PubMed  CAS  Google Scholar 

  • Ladisch S., Gillard B., Wong C., and Ulsh L. (1983) Shedding and immunoregulatory activity of YAC-1 lymphoma cell gangliosides.Cancer Res. 43, 3808–3813.

    PubMed  CAS  Google Scholar 

  • Lens P. F., Altena B., and Nusse R. (1986) Expression of c-sis and platelet-derived growth factor in in vitro-transformed glioma cells from rat brain tissue transplacentally treated with ethylnitrosourea.Molec. Cel. Biol. 10, 3537–3540.

    Google Scholar 

  • Libermann T. A., Nusbaum H. R., Razon N., Kris R., Lax I., Soreq H., Whittle N., Waterfield M. D., Ullrich A., and Schlessinger J. (1985) Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin.Nature 313, 144–147.

    PubMed  CAS  Google Scholar 

  • Liepkalns V. A., Icard-Liepkalns C., Yates A. J., Mattison S., and Stephens R. E. (1983) Effects of human brain cell culture conditions on [14C]glucosamine radioactivity incorporation into gangliosides.J. Lipid Res 24, 533–540.

    PubMed  CAS  Google Scholar 

  • Liepkalns V. A., Icard-Liepkalns C., Yates A. J., Thompson D. K., and Hart R. W. (1981) Effects of cell density on lipids of human glioma and fetal neural calls.J. Neurochem. 36, 1959–1965.

    PubMed  CAS  Google Scholar 

  • Lo H. S., Hogan E. L., Koontz D. A., Traylor T. D. (1978) Serum gangliosides in cerebral astrocytoma.Ann. Neurol. 8, 534–538.

    Google Scholar 

  • Mansson J.-E., Fredman P., Bigner D. D., Molin K., Rosengren B., Friedman H. S., and Svennerholm L. (1986) Characterization of new gangliosides of the lactotetraose series in murine xenografts of a human glioma cell line.FEBS Lett. 201, 109–113.

    PubMed  CAS  Google Scholar 

  • Manuelidis L., Yu R. K., and Manuelidis E. E. (1977) Ganglioside content and pattern in human gliomas in culture.Acta. Neuropath. (Berl.)38, 129–135.

    CAS  Google Scholar 

  • Marcus D. M., Dustira A., Diego I., Osovitz S., and Lewis D. E. (1987) Studies of the mechanism by which gangliosides inhibit the proliferative response of murine splenocytes to concanavalin A.Cell. Immunol. 104, 71–78.

    PubMed  CAS  Google Scholar 

  • Matyas G. R., Aaronson S. A., Brady R. O., and Fishman P. H. (1987) Alteration of glycolipids inras-transfected NIH 3T3 cells.Proc. Natl. Acad. Sci. USA 84, 6065–6068.

    PubMed  CAS  Google Scholar 

  • Maunoury R., Morelec M.-J., Hauttecoeur B., Enserguieix D., and Vedrenne C. (1979) Recherche d’ une correlation entre glycolipids et tumorigenicite dans six lignees cellulaires derivees de tumeurs cerebrales humaines.C. R. Acad. Sc. Paris 288, 851–854.

    CAS  Google Scholar 

  • Miller H. C. and Esselman W. J. (1983) Modulation of immune response by antigen-reactive lymphocytes after cultivation with gangliosides.J. Immunol. 115, 839.

    Google Scholar 

  • Miller-Podraza H. and Fishman P. H. (1983) Soluble gangliosides in cultured neurotumor cells.J. Neurochem. 41, 860–867.

    PubMed  CAS  Google Scholar 

  • Molin K., Mansson J.-E., Fredman P., and Svennerholm L. Sialosyllactotetraosylceramide, 3′-isoLM1, a ganglioside of the lactotetraose series isolated from normal human infant brain.J. Neurochem. 49, 216–219.

  • Nagai Y., Nakaishi H., and Sanai Y. (1986) Gene transfer as a novel approach to the gene-controlled mechanism of the cellular expression of glycosphingolipids.Chem. Phys. of Lipids 42, 91–103.

    CAS  Google Scholar 

  • Nakaishi H., Sanai, Y., Shiroki K., and Nagai Y. Analysis of cellular expression of gangliosides by gene transfection I: GD3 expression inmyc-transfected and transformed 3Y1 correlates with anchorage-independent growth activity.Biochem. Biophys. Res. Comm. 150, 760–765.

  • Nakakuma, H., Sanai Y., Shiroli K., and Nagai Y. (1984) Gene-related expression of glycolipids: Appearance of GD3 ganglioside in rat cells on transfection with transforming gene E1 of human adenovirus type 12 DNA and its transcriptional subunits.J. Biochem. 96, 1471–1480.

    PubMed  CAS  Google Scholar 

  • Nisen P. D., Zimmerman K. A., Cotter S. V., Gilbert F., and Alt F. W. (1986) Enhanced expression of the n-myc gene in Wilm’s tumors.Cancer Res. 46, 6217–6222.

    PubMed  CAS  Google Scholar 

  • O’Shaughnessy J., Deseau V., Amini S., Rosen N., and Bolen J. B. (1987) Analysis of the c-src gene product structure, abundance, and protein kinase activity in human neuroblastoma and glioblastoma cells.Oncogene Res. 2, 1–18.

    PubMed  Google Scholar 

  • Offner H., Thieme T., and Vandenbark A. A. (1987) Gangliosides induce selective modulation of CD4 from helper T lymphocytes.J. Immunol. 139, 3295–3305.

    PubMed  CAS  Google Scholar 

  • Pantazis P., Pelicci P. G., Dalla-Favera R., and Antoniades H. N. (1985) Synthesis and secretion of proteins resembling platelet-derived growth factor by human glioblastoma and fibrosarcoma cells in culture.Proc. Natl. Acad. Sci. 82, 2404–2408.

    PubMed  CAS  Google Scholar 

  • Parker J., Caldini G., Krishnamurti C., Ahrens P. B., and Ankel H. (1984) Binding of interleukin 2 to gangliosides.FEBS Lett. 170, 391.

    PubMed  CAS  Google Scholar 

  • Partington C. R., and Daly J. W. (1979) Effect of gangliosides on adenylate cyclase activity in rat cerebral cortical membranes.Mol. Pharm. 15 484–491.

    CAS  Google Scholar 

  • Piguet V., Diserens A.-C., Carrel S., Mach J.-P., and de Tribolet N. (1985) The immunobiology of human gliomas.Springer Semin. Immunopathology 8, 111–127.

    CAS  Google Scholar 

  • Portoukalian J., Zwingelstein, Abdul-Malak N., and Dore J.-F. (1978) Alteration of gangliosides in plasma and red cells of humans bearing melanoma tumorsBiochem. Biophys. Res. Comm. 85, 916–920.

    PubMed  CAS  Google Scholar 

  • Richardson C. L., Baker S. R., Morre D. J., and Keenan T. W. (1975) Glycosphingolipid synthesis and tumorigenesis. A role for the Golgi apparatus in the origin of specific receptor molecules of the mammalian cell surface.Biochim. Biophys. Acta 417, 175–186.

    PubMed  CAS  Google Scholar 

  • Robb R. J. (1986) The suppressive effect of gangliosides upon IL 2-dependent proliferation as a function of inhibition of IL 2-receptor association.J. Immunol. 136, 971–976.

    PubMed  CAS  Google Scholar 

  • Robert J., Freysz L., Sensenbrenner M., Mandel P., and Rebel G. (1975) Gangliosides of glial cells: a comparative study of normal astroblasts in tissue culture and glial cells isolated on sucrose-ficoll gradients.FEBS Letts.,50, 144–146.

    CAS  Google Scholar 

  • Robert J., Rebel G., Mandel P., (1977) Glycosphingolipids from cultured astroblasts.J. Lipid Res. 18, 517–522.

    PubMed  CAS  Google Scholar 

  • Rubin R., Sutton C. H., and Zimmerman H. M. (1968) Experimental ependymoblastoma. (Fine Structure).J. Neuropathol. Exp. Neurol. 27, 421–438.

    Google Scholar 

  • Ryan J. L., Inouye L. N., Gobran L., Yohe W. B., and Yohe H. C. (1985) Lack of specificity of brain gangliosides in the modulation of lymphocyte activation.Yale J. Biol. Med. 58, 459–467.

    PubMed  CAS  Google Scholar 

  • Sanai Y., Nakakuma H., Shiroki K., and Nagai Y. (1985) Expression of GD3 synthetase (sialyltransferase) activity in rat cells on transfection with early gene 1A of adenovirus type 12, inGlycoconjugates. Proceedings of the VIII International Symposium (E. A. Davidson et al., eds.), p. 262, Praeger.

  • Schechter A. L., Stern D. F., Vaidyanathan L., Decker S. J., Drebin J. A., Greene M. I., and Weinberg R. A. (1984) Theneu oncogene: anerb-B-related gene encoding a 185,000-Mr tumour antigen.Nature 313, 513–516.

    Google Scholar 

  • Schengrund C.-L. and Repman M. A. (1977) Cell culture of sixteen-day-old rat embryo cerebra and associated changes in ganglioside pattern.J. Neurochem. 29, 923–927.

    PubMed  CAS  Google Scholar 

  • Sela B. A. (1980) Splenocytes incorporated with exogenous gangliosides induce a mixed lymphocyte reaction in autologous lymphocytes.Cell. Immunol. 49, 196–201.

    PubMed  CAS  Google Scholar 

  • Seyfried T. N., Yu R. K., Saito M., and Albert M. (1987) Ganglioside composition of an experimental mouse brain tumor.Cancer Res. 47, 3538–3542.

    PubMed  CAS  Google Scholar 

  • Shaposhnikova G. I., Prokazova N. V., Buznikov G. A., Zvezdina N. D., Teplitz N. A., and Bergelson L. D. (1984) Shedding of gangliosides from tumor cells depends on cell density.Eur. J. Biochem. 140, 567–570.

    PubMed  CAS  Google Scholar 

  • Skipski V. P., Katopodis N., Prendergast J. S., et al. (1975) Gangliosides in blood serum of normal rats and Morris hepatoma 5123tc-bearing rats.Biochem. Biophys. Res. Commun. 67, 1122–1127.

    PubMed  CAS  Google Scholar 

  • Snyder R. A. and Brady R. O. (1970) Ganglioside patterns of cultured human glioma cells.Neurology (abst. BT39)20, 412.

    CAS  Google Scholar 

  • Spiegel S., Ravid A., and Wilchek M. (1979) Involvment of gangliosides in lymphocyte stimulation.Proc. Natl. Acad. Sci. 76, 5277.

    PubMed  CAS  Google Scholar 

  • Spiegel S. and Fishman P. H. (1987) Gangliosides as bimodal regulators of cell growth.Proc. Natl. Acad. Sci. 84, 141–145.

    PubMed  CAS  Google Scholar 

  • Spiegel S., Fishman P. H., and Weber R. J. (1985) Direct evidence that endogenous GMI ganglioside can mediate thymocyte proliferation.Science 230, 1285–1287.

    PubMed  CAS  Google Scholar 

  • Spitalnik S. L., Spitalnik P. F., Dubois C., Mulshine J., Magnani J. L., Cuttitta F., Civin C. I., Minna J. D., Ginsburg V. (1986) Glycolipid antigen expression in human lung cancer.Cancer Res. 46, 4751–4755.

    PubMed  CAS  Google Scholar 

  • Stoolmiller A. C., Dawson G., Kemp S. F., and Schachner M. (1979) Synthesis of glycosphingolipids in mouse glial tumors.J. Neurochem. 32, 637–641.

    PubMed  CAS  Google Scholar 

  • Svennerholm L., Fredman P., Jungbjer B., Mansson J.-E., Rynmark B.-M., Bostrom K., Hagberg B., Noren L., and Santavuori P. (1987) Large alterations in ganglioside and neutral glycosphingolipid patterns in brains from cases with infantile neuronal ceroid lipofuscinosis/polyunsaturated fatty acid lipidosis.J. Neurochem. 49, 1772–1783.

    PubMed  CAS  Google Scholar 

  • Takenaka N., Mikoshiba K., Takamatsu K., Tsukada Y., Ohtani M., and Toya S. (1985) Immunohistochemical detection of the gene product of Rous sarcoma virus in human brain tumors.Brain Res. 337, 201–207.

    PubMed  CAS  Google Scholar 

  • Takimoto M., Hirakawa T., Oikawa T., Naiki M., Miyoshi I., and Kobayashi H. (1986) Synergistic effects of themyc andras oncogenes on ganglioside synthesis by BALB/c 3T3 fibroblasts.J. Biochem. 100, 813–816.

    PubMed  CAS  Google Scholar 

  • Traylor T. D. and Hogan E. L. (1980) Gangliosides of human cerebral astrocytomas.J. Neurochem. 34, 126–131.

    PubMed  CAS  Google Scholar 

  • Trent J., Meltzer P., Rosenblum M., Harsh G., Kinzler K., Mashal R., Feinberg A., and Vogelstein B. (1986) Evidence for rearrangement, amplification, and expression of c-myc in a human glioblastoma.Proc. Natl. Acad. Sci. USA 83, 470–473.

    PubMed  CAS  Google Scholar 

  • Tsuchiya S. and Hakomori S.-I. (1983) Cell surface glycolipids of transformed NIH 3T3 cells transfected with DNAs of human bladder and lung carcinomas.EMBO J. 2, 2323–2326.

    PubMed  CAS  Google Scholar 

  • Whisler, R. L. and Yates A. J. (1980) Regulation of lymphocyte responses by human gangliosides. I. Characteristics of inhibitory effects and the induction of impaired activation.J. Immunol. 125, 2105–2111.

    Google Scholar 

  • Wikstrand C. J., and Bigner D. D. (1980) Immunobiologic aspects of the brain and human gliomas.Amer. J. Path. 98, 517–567.

    PubMed  CAS  Google Scholar 

  • Winston K., Gilles F. H., Leviton A., and Fulchiero A. (1977) Cerebellar gliomas in children.J. Natl. Cancer Inst. 58, 833–838.

    PubMed  CAS  Google Scholar 

  • Wong A. J., Bigner S. H., Bigner D. D., Kinzler K. W., Hamilton S. R., and Vogelstein B. (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification.Proc. Natl. Acad. Sci. USA 84, 6899–6903.

    PubMed  CAS  Google Scholar 

  • Yates A. J., Thompson D. K., Boesel C. P., Albrightson C., and Hart R. W. (1979) Lipid composition of human neutral tumors.J. Lipid Res. 20, 428–436.

    PubMed  CAS  Google Scholar 

  • Yates A. J., Hitchcock C. L., Stewart S. S., and Whisler R. L. (1980-a) Immunological properties of gangliosides.ACS Symposium Series, No. 128. Cell Surface Glycolipids. (C. C. Sweeley, ed.), 419–433.

  • Yates A. J., Mattison S. L., and Whisler R. L. (1980-b) Effect of concanavalin A on ganglioside metabolism of human lymphocytes.Biochem. Biophys. Res. Comm. 96, 211–218.

    PubMed  CAS  Google Scholar 

  • Yates A. J., Liepkalns V. A., Icard-Liepkalns C., Jungalwala F., Stephens R. E., and Hart R. W. (1982) Effects of cell density on the neutral glycolipid composition of cultured human brain and glioma cells.Neurochem. Res. 7, 1269–1276.

    PubMed  CAS  Google Scholar 

  • Yates A. J., Icard-Liepkalns C., Sirinek L. P., Stephens R. E., Elder P. J., Liepkalns V. A., and Whisler R. L. (1985-a) Natural killer activity against cultured human neural tumor and fetal brain cells.Cell. Immunol. 90, 485–492.

    PubMed  CAS  Google Scholar 

  • Yates A. J., Stephens R. E., Elder P. J., Markowitz D. L., and Rice J. M. (1985-b) Effects of interferon and gangliosides on growth of cultured human glioma and fetal brain cells.Cancer Res. 45, 1033–1039.

    PubMed  CAS  Google Scholar 

  • Yates A. J., Stephens R. E., Markowitz D. L., Elder P., Sirinek L. P., Whisler R. L. (1985-c) Resistance to natural killer cytolysis and neutral glycolipid composition of cultured human glioma and fetal brain cells.J. Neuropathol. Exp. Neurol. 44, 371–383.

    PubMed  CAS  Google Scholar 

  • Yates A. J., and Stephens R. E. (1987) Biology of Human Gliomas.Perspect. Pediatr. Pathol. 10, 135–159.

    PubMed  CAS  Google Scholar 

  • Yates A. J., Markowitz D. L., Stephens R.E., Pearl D. K., and Whisler R. L. (1988) Growth inhibition of cultured human glioma cells by beta interferon is not dependent on changes in ganglioside composition.J. Neuropathol. Exp. Neurol. 47, 119–127.

    PubMed  CAS  Google Scholar 

  • Yogeeswaran G. (1983) Cell surface glycolipids and glycoproteins in malignant transformation.Adv. Cancer Res. 38, 289–350.

    PubMed  CAS  Google Scholar 

  • Zulch K. J. (1980) Principles of the New World Health Organization (WHO) classification of brain tumors.Neuroradiology 19, 59–66.

    PubMed  CAS  Google Scholar 

  • Zulch K. J. (1981) Historical development of the classification of brain tumors and the new proposal of the World Health Organization (WHO).Neurosurg. Rev. 4, 123–127.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yates, A.J. Glycolipids and gliomas. Neurochemical Pathology 8, 157–180 (1988). https://doi.org/10.1007/BF03160144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160144

Index Entries

Navigation