Molecular and Chemical Neuropathology

, Volume 18, Issue 3, pp 313–328 | Cite as

Toluene-induced oxidative stress in several brain regions and other organs

  • Cara J. Mattia
  • Syed F. Ali
  • Stephen C. Bondy
Original Articles


The in vivo dose-response relationship between toluene and reactive oxygen species (ROS) formation in rat brain, liver, kidney, and lung, and the time-course of these effects has been characterized. The rate of oxygen radical formation was measured using the probe 2′,7′-dichlorofluorescin diacetate. In vivo exposure to various doses of toluene (0.5, 1.0, and 1.5 g/kg ip) elicited a dose-dependent elevation of ROS generation within crude mitochondrial fractions obtained from rat lung and kidney, and within crude synaptosomal fractions from cerebellum. ROS formation in crude mitochondrial fractions from liver, and crude synaptosomal fractions from striatum and hippocampus, reached a maximum value at relatively low doses of toluene. Of the brain regions, the hippocampus had the highest induced levels of ROS. In vivo exposure to a single dose of toluene (1.5 g/kg ip), revealed that toluene-induced ROS reached a peak within 2 h, which correlated directly with measured toluene blood levels. This elevated oxidative activity was maintained throughout the next 24 h, even though blood values of toluene decreased to negligible amounts. These results demonstrate that exposure to toluene results in broad systemic elevation in the normal rate of oxygen radical generation, with such effects persisting in the tissues despite a rapid decline in toluene blood levels. Acute exposure to toluene may lead to extended ROS-related changes, and this may account for some of the clinical observations made in chronic toluene abusers.

Index Entries

Organic solvent neurotoxicity toluene reactive oxygen species central nervous system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agency for Toxic Substances and Disease Registry. (December, 1989)Toxicologic Profile for Toluene. U.S. Public Health Service.Google Scholar
  2. Bakke O. M. and Scheline R. (1970) Hydroxylation of aromatic hydrocarbons in the rat.Toxicol. Appl. Pharmacol. 16, 691.PubMedCrossRefGoogle Scholar
  3. Bass D. A., Parce J. W., Dechatelet L. R., Szejda P., Seeds M. C., and Thomas M. (1983) Flow cytometric studies of oxidative product formation by neutrophils: A graded dose response to membrane stimulation.J. Immunol. 130, 1910–1917.PubMedGoogle Scholar
  4. Baud L. and Ardaillou R. (1986) Reactive oxygen species: production and role in the kidney.Am. J. Physiol.,251, F765-F776.PubMedGoogle Scholar
  5. Benignus V. A. (1981) Health effects of toluene: A review.Neurotoxicology 2, 567–588.PubMedGoogle Scholar
  6. Bjornaes S. and Naaslund L. U. (1988) Biochemical changes in different brain areas after toluene inhalation.Toxicology 49, 367–374.PubMedCrossRefGoogle Scholar
  7. Boor J. W. and Hurtig H. I. (1977) Persistent cerebellar ataxia after exposure to toluene.Ann. Neurol. 2, 440–442.PubMedCrossRefGoogle Scholar
  8. Bruckner J. V. and Peterson R. G. (1981) Evaluation of toluene and acetone inhalant abuse. I. Pharmacology and Pharmacodynamics.Toxicol. Appl. Pharmacol. 61, 27–38.PubMedCrossRefGoogle Scholar
  9. Chacon E. and Acosta D. (1991) Mitochondrial regulation of superoxide by Ca2+: An alternate mechanism for the cardiotoxicity of Doxorubicin.Toxicol. Appl. Pharmacol. 107, 117–128.PubMedCrossRefGoogle Scholar
  10. Cohr K. H. and Stokholm J. (1979) Toluene: a toxicologic review.Scand. J. Work Environ. Health. 5, 71–86, 1979.PubMedGoogle Scholar
  11. Dodd P. R., Hardy J. A., Oakley A. E., Edwardson J. A., Perry E. K., and Delaunoy J. P. (1981) A rapid method for preparing synaptosomes: Comparison with alternative procedures.Brain Res. 226, 107–118.PubMedCrossRefGoogle Scholar
  12. Fornazzari L., Wilkinson D. A., Kapur B. M., and Carlen P. L. (1983) Cerebellar, cortical and functional impairment in toluene abusers.Acta Neurol. Scand. 67, 319–329.PubMedCrossRefGoogle Scholar
  13. Gerarde H. W. and Ahlstrom D. B. (1966) Toxicologic studies on hydrocarbons: XI: Influence of dose on the metabolism of mono-n-alkyl derivatives of benzene.Toxicol. Appl. Pharmacol. 9, 185–191.PubMedCrossRefGoogle Scholar
  14. Gospe S. M. and Calaban M. J. (1988) Central nervous system distribution of inhaled toluene.Fund. Appl. Toxicol. 11, 540–545.CrossRefGoogle Scholar
  15. Guertin D. L. and Gerarde H. W. (1959) Toxicological studies on hydrocarbons.AMA Arch. Ind. Health 20, 262–265.Google Scholar
  16. Halliwell B. and Gutteridge J. M. C. (1985)Free Radicals in Biology and Medicine. Clarendon, Oxford.Google Scholar
  17. Hansson E., von Euler G., Fuxe K., and Hansson T. (1988) Toluene induces changes in the morphology of astroglia and neurons in striatal primary cell cultures.Toxicology 49, 155–163.PubMedCrossRefGoogle Scholar
  18. Ikeda M. and Ohtsuji H. (1971) Phenobarbital-induced protection against toxicity of toluene and benzene in the rat.Toxicol. Appl. Pharmacol. 20, 30–43.PubMedCrossRefGoogle Scholar
  19. Jerina D. M. and Daly J. W. (1974) Arene oxides: a new aspect of drug metabolism.Science 185, 573–575.PubMedCrossRefGoogle Scholar
  20. Kelly T. W. (1975) Prolonged cerebellar dysfunction associated with paint sniffing.Pediatrics 56, 605–608.PubMedGoogle Scholar
  21. Korpela M. and Tahti H. (1988) The effect of in vivo and in vitro toluene exposure on rat erythrocyte and synaptosome membrane integral enzymes.Pharmacol. Toxicol. 63, 30–32.PubMedCrossRefGoogle Scholar
  22. Kyrklund T., Kjellstrand P., and Haglid K. (1987) Brain lipid changes in rats exposed to xylene and toluene.Toxicology 45, 123–133.PubMedCrossRefGoogle Scholar
  23. Ladefoged O., Strange P., Moller A., Lam H. R., Ostergaard G., Larsen J. J., and Arlien-Soborg P. (1991) Irreversible effects in rats of toluene (inhalation) exposure for six months.Pharmacol. Toxicol. 68, 384–391.PubMedCrossRefGoogle Scholar
  24. Laham S. (1970) Metabolism of industrial solvents.Industrial Med. 39, 237–242.Google Scholar
  25. LeBel C. P. and Bondy S. C. (1990) Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes.Neurochem. Int. 17, 435–440.CrossRefPubMedGoogle Scholar
  26. LeBel C. P. and Schatz R. A. (1988) Toluene-induced alterations in rat synaptosomal membrane composition and function.J. Biochem. Toxicol. 3, 279–293.CrossRefGoogle Scholar
  27. LeBel C. P. and Schatz R. A. (1989) Effect of toluene on rat synaptosomal phospholipid methylation and membrane fluidity.Biochem. Pharmacol. 38, 4005–4011.PubMedCrossRefGoogle Scholar
  28. LeBel C. P. and Schatz R. A. (1990) Altered synaptosomal phospholipid metabolism after toluene. Possible relationship with membrane fluidity, Na+, K+-adenosine triphosphate and phospholipid methylation.J. Pharmacol. Exp. Ther. 253, 1189–1197.PubMedGoogle Scholar
  29. Malm G. and Lying T. U. (1980) Cerebellar dysfunction related to toluene sniffing.Acta Neurol. Scand. 62, 188–190.PubMedGoogle Scholar
  30. Mason R. P. (1982) Free radical intermediates in the metabolism of toxic chemicals, inFree Radicals in Biology (Pryor, W. A. ed.), pp. 161, Academic, New York.Google Scholar
  31. Mattia C. J., LeBel C. P., and Bondy S. C. (1991) Effects of toluene and its metabolites on cerebral reactive oxygen species generation.Biochem. Pharmacol. 42, 879–882.PubMedCrossRefGoogle Scholar
  32. Meister A. and Anderson M. E. (1983) Glutathione.Ann. Rev. Biochem. 52, 711–60.PubMedCrossRefGoogle Scholar
  33. Mihara M., Uchiyama M., and Fukazawa K. (1980) Thiobarbituric acid value of fresh homogenate of rat as a parameter of lipid peroxidation in aging, CCI4 intoxication and Vitamin E deficiency.Biochem. Med. 23, 302–311.PubMedCrossRefGoogle Scholar
  34. Naaslund L. U. (1986) Hippocampal EEG in rats after chronic toluene inhalation.Acta Pharmacol. Toxicol. 59, 325–332.Google Scholar
  35. Press E. and Done A. K. (1967) Solvent sniffing. Physiological effects and community control measures for intoxication from intentional inhalation of organic solvents.Pediatrics 39, 451–461.PubMedGoogle Scholar
  36. Rees D. C., Wood R. W., and Laties V. G. (1989) Evidence of tolerance following repeated exposure to toluene in the rat.Pharmacol. Biochem. Behav. 32, 283–291.PubMedCrossRefGoogle Scholar
  37. Sato A., Nakajima T., Fujiwara Y., and Hirosawa K. (1974) Pharmacokinetics of benzene and toluene.Int. Arch. Arbeitsmed. 33, 169–182.PubMedCrossRefGoogle Scholar
  38. Savolainen H. (1977) Some effects of the mechanisms by which industrial solvents produce neurotoxic effects.Chem-Biol. Interactions 18, 1–10.CrossRefGoogle Scholar
  39. Savolainen H. (1978) Distribution and nervous system binding of intraperitoneally injected toluene.Acta Pharmacol. Toxicol. 43, 78–80.Google Scholar
  40. Suleiman S. A. (1987) Petroleum hydrocarbon toxicity in vitro: Effect of n-alkanes, benzene and toluene on pulmonary alveolar macrophages and lysosomal enzymes of the lung.Arch. Toxicol. 59, 402–407.PubMedCrossRefGoogle Scholar
  41. Sutherland G., Bose R., Louw D., and Pinsky C. (1991) Global elevation of brain superoxide dismutase activity following forebrain ischemia in rat.Neurosci. Lett. 128, 169–172.PubMedCrossRefGoogle Scholar
  42. Taher S. M., Anderson R. J., McCartney R., Popovtzer M. M., and Schrier R. W. (1974) Renal tubular acidosis associated with toluene “sniffing.”New Engl. J. Med. 290, 765–768.PubMedCrossRefGoogle Scholar
  43. Trush M. A., Mimnaugh E. G., and Gram T. E. (1982) Activation of pharmacologic agents to radical intermediates. Implications for the role of free radicals in drug action and toxicity.Biochem. Pharmacol. 31, 3335–3346.PubMedCrossRefGoogle Scholar
  44. Uchiyama M. and Mihara M. (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test.Anal. Biochem. 86, 271–278.PubMedCrossRefGoogle Scholar
  45. Utley H. G., Bernheimm F., and Hochstein P. (1967) Effect of sulfhydryl reagents on peroxidation in microsomes.Arch. Biochem. Biophys. 118, 29–32.CrossRefGoogle Scholar
  46. Vazquez-Nin G. H., Zipitria D., Echeverria O. M., Bermudez-Rattoni F., Cruz-Morales S. E., and Prado-Alcals R. A. (1980) Early neuronal alterations caused by experimental thinner inhalation in young rats.Neurobehav. Toxicol. 2, 25–31.PubMedGoogle Scholar
  47. von Euler G., Fuxe K., Hansson T., and Gustafsson J. (1988) Effects of toluene treatment in vivo and in vitro on the binding characteristics of (3H)-neurotensin in rat striatal membranes.Toxicology 49, 149–154.CrossRefGoogle Scholar
  48. von Euler G., Fuxe K., and Bondy S. C. (1990) Ganglioside GM1 prevents and reverses toluene-induced increases in membrane fluidity and calcium levels in rat brain synaptosomes.Brain Res. 508, 210–214.CrossRefGoogle Scholar
  49. Walsh T. J. and Emerich D. F. (1988) The hippocampus as a common target of neurotoxic agents.Toxicology 49, 137–140.PubMedCrossRefGoogle Scholar
  50. Yamawaki S., Segawa T., and Sarai K. (1982) Effects of acute and chronic toluene inhalation on behaivor and (3H)-serotonin binding in rat.Life Sci. 30, 1997–2002.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 1993

Authors and Affiliations

  • Cara J. Mattia
    • 1
  • Syed F. Ali
    • 2
  • Stephen C. Bondy
    • 1
  1. 1.Department of Community and Environmental MedicineUniversity of CaliforniaIrvine
  2. 2.Division of Reproductive and Developmental ToxicologyNational Center for Toxicological ResearchJefferson

Personalised recommendations