Skip to main content
Log in

Ibotenic acid mediates neurotoxicity and phosphoinositide hydrolysis by independent receptor mechanisms

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Ibotenic acid (Ibo) has been shown to have agonist activity at both theN-methyl-d-aspartate (NMDA) andtrans-ACPD or metabolotropic quisqualate (Qm) receptor sites in several systems. Both of these receptor sites have been implicated in excitotoxicity. Like NMDA neurotoxicity, Ibo neurotoxicity can be enhanced by glycine and blocked by MK-801. Ibo induced stimulation of phosphoinositide (PI) hydrolysis, on the other hand, is unaffected by either of these treatments. We therefore conclude that Ibo is capable of acting at both NMDA andtrans-ACPD receptors in the CNS, although only activation of NMDA receptors is involved in Ibo neurotoxicity. This conclusion leads us to postulate that stimulation of phosphoinositide hydrolysis is neither necessary nor sufficient for neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Choi D. W., Maulucci-Gedde M. A., and Kreigstein, A. R. (1987) Glutamate neurotoxicity in cortical cell culture.J. Neurosci. 7, 357–368.

    PubMed  CAS  Google Scholar 

  • Choi D. W. (1987) Ionic dependence of glutamate neurotoxicity.J. Neurosci. 7, 369–379.

    PubMed  CAS  Google Scholar 

  • Collingridge G. L. and Bliss T. V. P. (1987) NMDA receptors: Their role in long-term potentiation.Trends Neurosci. 10, 288–293.

    Article  CAS  Google Scholar 

  • Costa E., Guidotti A., Manev H., Szekely A. M., and Wroblewski J. T. (1988) Signal transduction at excitatory amino acid receptors: Modulation by gangliosides.Neurol. Neurobiol. 46, 29–38.

    CAS  Google Scholar 

  • Cotman C. W., Monaghan D. T., and Ganong A. H. (1988) Excitatory amino acid neurotransmission: NMDA receptors and Hebb-Type synaptic plasticity.Annu. Rev. Neurosci 11, 61–80.

    Article  PubMed  CAS  Google Scholar 

  • Coyle J. T., Bird S. J., Evans R. H., Gulley R. I., Nadler J. V., Nicklas W. J. and Olney J. W. (1981) Excitatory amino acid neurotoxins: Selectivity, specificity and mechanisms of action.Neurosci. Res. Prog. Bull. 19, 331–427.

    Google Scholar 

  • Crunelli V., Forda S., and Kelly J. S. (1983) Blockade of amino acid-induced depolarizations and inhibition of excitatory post-synaptic potentials in rat dentate gyrus.J. Physiol. 341, 627–640.

    PubMed  CAS  Google Scholar 

  • Cull-Candy S. G. (1976) Two types of extra-junctional glutamate receptors in locust muscle fibers.J. Physiol. 255, 449–464.

    PubMed  CAS  Google Scholar 

  • Dichter M. A. (1978) Rat cortical neurons in cell culture: Culture methods, cell morphology, electrophysiology, and synapse formation.Brain Res. 382, 279–293.

    Article  Google Scholar 

  • Downes C. P., Hawkins P. T., and Irvine R. F. (1986) Inositol 1,3,4,5-tetrakisphosphate and phosphatidylinositol 3,4-bisphosphate are the probable precursors of inositol 1,3,4-trisphosphate in agonist-stimulated parotid.Biochem. J. 238, 501–506.

    PubMed  CAS  Google Scholar 

  • Foster A. C. and Fagg G. E. (1984) Acidic amino acid binding sites in mammalian neuronal membranes: Their characterization and relationship to synaptic receptors.Brain Res. Rev. 7, 103–164.

    Article  CAS  Google Scholar 

  • Garthwaite G. and Garthwaite J. (1989) Quisqualate neurotoxicity: A delayed, CNQX-sensitive precess triggered by a CNQX-insensitive mechanism in young rat hippocampal slices.Neurosci. Lett. 99, 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Honore T., Davies S. N., Drejer J., Fletcher E. J., Jacobsen P., Lodge D., and Nielsen, E. N. (1988) Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists.Science 241, 701–703.

    Article  PubMed  CAS  Google Scholar 

  • Johnson J. W. and Asher P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons.Nature 325, 529–531.

    Article  PubMed  CAS  Google Scholar 

  • Johnston G. A. R., Curtis D. R., deGroat W. C. and Duggan A. W. (1968) Central actions of ibotenic acid and mucimol.Biochem. Pharmacol. 17, 2488, 2489.

    Article  PubMed  CAS  Google Scholar 

  • Kemp J. A., Priestly T., and Woodruff G. N. (1986) MK-801, a novel, orally active anticonvulsant is a potent non-competitiveN-methyl-d-aspartate receptor antagonist.Br. J. Pharmacol. Proc. (Suppl.) 89, 535P.

    Google Scholar 

  • Manzoni O., Fagni I., Pin J.-P., Rassendren F., Poulat F., Sladeczek F., and Bockaert J. (1990) (Trans)-1-aminocyclopentyl-1,3-dicarboxylate stimulates quisqualate phosphoionositide-coupled receptors but not ionotropic glutamate receptors in striatal neurons andXenopus oocytes.Mol. Pharmacol. 38, 1–6.

    PubMed  CAS  Google Scholar 

  • Mayer M. L. and Westbrook G. L. (1987) The physiological action of excitatory amino acids in the vertebrate central nervous system.Prog. Neurobiol. 28, 197–276.

    Article  PubMed  CAS  Google Scholar 

  • Mayer M. L. and Westbrook G. L. (1987a) Permeation and block ofN-methyl-d-aspartate receptor channels by divalent cations in mouse cultured central neurons.J. Physiol. 394, 501–527.

    PubMed  CAS  Google Scholar 

  • Nicoletti F., Wroblewski J. T., Novelli A., Alho H., Guidotti A., and Costa E. (1986) The activation of inositol phospholipid metabolism as a signal transducing system for excitatory amino acids in primary cultures of cerebellar granule cells.J. Neurosci. 6(7), 1905–1911.

    PubMed  CAS  Google Scholar 

  • Olney J. W. (1987) Revelations in excitotoxicity: What next?Neurol. Neurobiol. 46, 589–596.

    Google Scholar 

  • Patel J., Moore W. C., Thompson C., Keith R. A., and Salama A. I. (190) Characterization of the quisqualate receptor linked to phosphoinositide hydrolysis in neurocortical cultures.J. Neurochem. 54, 1461–1465.

    Google Scholar 

  • Patel J., Zinkand W. C., Thompson C., Keith R., and Salama A. (1989) Role of glycine in theN-methyl-d-aspartate-mediated neuronal toxicity.J. Neurochem. 54, 849–854.

    Article  Google Scholar 

  • Patel J., Zinkand W. C., Klika A. B., Mangano T. J., Keith R. A., and Salama A. I. (1990a) 6,7-Dinitroquinoxaline-2,3-dione blocks the cytotoxicity ofN-methyl-d-aspartate and kainate but not quisqualate in cortical cultures.J. Neurochem. 55, 114–121.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds I. J. and Miller R. J. (1988) Multiple sites for the regulation of the NMDA receptor.Mol. Pharmacol. 33, 581–584.

    PubMed  CAS  Google Scholar 

  • Schwarcz R., Hokfelt T., Fuxe K., Jonsson G., Goldstein M., and Terenius L. (1979) Ibotenic acid-induced neuronal degereration: A morphological and neurochemical study.Exp. Brain Res. 37, 199–216.

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek F., Pin J. P., Recasens M., Bockaert J., and Weiss S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurons.Nature 317, 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Watkins J. C. and Evans R. H. (1981) Excitatory amino acid transmitters.Annu. Rev. Pharmacol. Toxicol. 21, 165–204.

    Article  PubMed  CAS  Google Scholar 

  • Wong E. H. F., Kemp J. A., Priestly T., Knight A. R., Woodruff G. N., and Iversen L. L. (1986) The anticonvulsant MK-801 is a potentN-methyl-d-aspartate antagonist.Proc. Natl. Acad. Sci. USA 83, 7104–7108.

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski F. and LaDue J. S. (1955) Lactic dehydrogenase activity in blood.Proc. Soc. Exp. Biol. Med. 90, 210–213.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinkand, W.C., Moore, W.C., Thompson, C. et al. Ibotenic acid mediates neurotoxicity and phosphoinositide hydrolysis by independent receptor mechanisms. Molecular and Chemical Neuropathology 16, 1–10 (1992). https://doi.org/10.1007/BF03159956

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159956

Index Entries

Navigation