Molecular and Chemical Neuropathology

, Volume 13, Issue 3, pp 175–183 | Cite as

Effect of acute starvation on monoamine oxidase and Na+, K+-ATPase activity in rat brain

  • Gurcharan Kaur
  • Kawaljit Kaur


The activities of monoamine oxidase (MAO), responsible for oxidative deamination of many biogenic amines, and Na+, K+-ATPase, which plays a crucial role in the release mechanism of neurotransmitters, were determined in rat brain after acute starvation. They were assayed biochemically from four different regions of the brain in two subcellular fractions. Acute starvation decreased the activity of MAO, whereas the Na+, K+-ATPase activity was increased. An effect of starvation was also seen on the blood glucose level, body wt, and the protein content of different brain regions. Starvation or normal dietary fluctuations of certain nutrients that exert precursor influence over neurotransmitter synthesis are important to the brain, and contribute to its regulation of both neuroendocrine response and behavior. A rise in the substrate level, i.e., ATP, as a result of increased utilization of ketone bodies and low level of monoamines in the brain after acute starvation, may be the underlying factor for increasing the activity of Na+, K+-ATPase in rat brain. These results suggest that, probably, certain adaptive mechanisms become operative in the brain under disturbed physiological conditions.

Index Entries

Acute starvation neurotransmitter function nutrient availability monoamine oxidase activity diet fasting brain function brain neurochemical responses Na+, K+-ATPase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson G. H. (1981) Diet, neurotransmitters, and brain function.Brit. Med. Bull. 37, 95–100.PubMedGoogle Scholar
  2. Asatoor A. M. and King E. J. (1954) Simplified colorimetric blood: sugar method.Biochem. J. 56, (x/iv).Google Scholar
  3. Catravas G. N., Takenaga J., and McHale C. G. (1977) Effect of chronic administration of morphine on monoamine oxidase activity in discrete regions of brain in rats.Biochem. Pharmacol. 26, 211–214.PubMedCrossRefGoogle Scholar
  4. Desaiah D. and Ho I. K. (1977) Kinetics of catecholamine sensitive Na+, K+-ATPase activity in mouse brain synaptosomes.Biochem. Pharmacol. 26, 2029–2035.PubMedCrossRefGoogle Scholar
  5. Devivo D. C., Kenneth L. M. and Marry P. L. (1975) Starvation and seizures: observations on the electroconvulsive threshold and cerebral metabolism of the starved adult rat.Arch. Neurol. 32, 755–60.PubMedGoogle Scholar
  6. Dubois K. P. and Potter V. R. (1943) The assay of animal tissues for respiratory enzyme III. Adenosine triphosphatase.J. Biol. Chem. 150, 185–187.Google Scholar
  7. Fichter M. M. and Pirke K. M. (1984) Hypothalamic pituitary function in starving healthy subject, inPsychobiology of Anorexia Nervosa (Pirke K. M. and Ploog D., eds.), pp. 124–135, Springer-Verlag, Berlin.Google Scholar
  8. Fiske C. H. and Subbarow Y. (1925) The colorimetric determination of phosphorus.J. Biol. Chem. 66, 375–381.Google Scholar
  9. Fowler C. J., Callingham B., Mantle T. J., and Tipton F. K. (1978) Monoamine oxidase A and B; a useful concept.Biochem. Pharmacol. 27, 97–101.CrossRefGoogle Scholar
  10. Gilbert I. C. Wyllie M. G., and Davison D. V. (1975) Nerve terminal ATPase as possible trigger for neurotransmitters release.Nature 255, 237–238.PubMedCrossRefGoogle Scholar
  11. Hess B. and Brand K. (1974) Methods for animal tissues and microorganisms, inMethods of Enzymatic Analysis (Bergmeyer H. U., ed.), vol. 1, pp. 399–409, Academic, New York.Google Scholar
  12. Jain M. (1977) Monoamine oxidase examination of multiple forms.Life Sci. 20, 1925–1934.PubMedCrossRefGoogle Scholar
  13. Joost H. G. and Beckmann J. (1980) On the relation of glucose and insulin secretion in the fasting state.Metabolism 29, 23–27.PubMedCrossRefGoogle Scholar
  14. Lai J. C. K., Leung T. K. C., Guest J. F., Lim L., and Davison A. N. (1980) The monoamine oxidase inhibitors clorgyline and L-deprenyl also affect the uptake of dopamine, noradrenaline, and serotonin by rat brain synaptosomal preparation.Biochem. Pharmacol. 29, 2763–2767.PubMedCrossRefGoogle Scholar
  15. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with Folin-phenol reagent.J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  16. Mayanil C. S. K., Kazmi S. M. I., and Baquer N. Z. (1982a) Na+, K+-ATPase and Mg2+-ATPase activities in different regions of rat brain during alloxan diabetes.J. Neurochem. 39, 903–908.PubMedCrossRefGoogle Scholar
  17. Mayanil C. S. K., Kazmi S. M. I., and Baquer N. Z. (1982b) Changes in monoamine oxidase activity in rat brain during alloxan diabetes.J. Neurochem. 38, 179–183.PubMedCrossRefGoogle Scholar
  18. Mayanil C. S. K. and Baquer N. Z. (1983) Mechanism of the involvement of monoamine oxidase in the regulation of (Na+, K+)-ATPase in rat brain.Biochim. Biophys. Acta 757, 151–155.PubMedGoogle Scholar
  19. Mayanil C. S. K. and Baquer N. Z. (1985) Kinetics of the mechanism of action of monoamine oxidase in the regulation of Na+, K+-ATPase activity in rat brain.J. Neurochem. 44, 25–30.PubMedCrossRefGoogle Scholar
  20. McMurray W. C. and Begg R. W. (1959) Effect of valinomycin on oxidative phosphorylation.Arch. Biochem. Biophys. 84, 546–548.CrossRefGoogle Scholar
  21. Philipp E. and Prike K. M. (1987) Effect of starvation on hypothalamic tyrosine hydroxylase activity in adult male rats.Brain Res. 413, 53–59.PubMedCrossRefGoogle Scholar
  22. Schweiger U., Warnhoff M., and Pirke K. M. (1985) Brain tyrosine availability and the depression of central nervous norepinephrine turnover in acute and chronic starvation.Brain Res. 335, 207–212.PubMedCrossRefGoogle Scholar
  23. Shohmori T., Okita M., and Kohsaka M. (1979) Effect of insulin on hyperphenylalaninemia rats.Biochem. Med. 21, 202–208.PubMedCrossRefGoogle Scholar
  24. Skou J. C. (1965) Enzymatic basis for active transport of Na+, K+ across cell membrane.Physiol. Rev. 5, 596–617.Google Scholar
  25. Tagliamonte A., Demontis M. G., Olianas M. C., Onali P. L., and Gessa G. L. (1975) Possible role of insulin in the transport of tyrosine and tryptophan from blood to brain.Pharmacol. Res. Commun. 7, 493–499.CrossRefGoogle Scholar
  26. Vizi E. S. (1978) Na+, K+-activated ATPase as a trigger in transmitter release.Neuroscience 3, 367–384.PubMedCrossRefGoogle Scholar
  27. Wu P. H. and Phillis J. W. (1978) Effect of α- and β-adrenergic blocking agent on the biogenic amine stimulated (Na+, K+)-ATPase of rat cerebral cortical synaptosomal membrane.Gen. Pharmacol. 2, 421–424.Google Scholar

Copyright information

© Humana Press 1991

Authors and Affiliations

  • Gurcharan Kaur
    • 1
  • Kawaljit Kaur
    • 1
  1. 1.Neurophysiology and Neurochemistry Laboratory, School of Life SciencesGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations