Skip to main content
Log in

Compensatory responses to nigrostriatal bundle injury

Studies with 6-hydroxydopamine in an animal model of Parkinsonism

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Intracerebral injections of the neurotoxin 6-hydroxydopamine (6-HDA) can produce selective, near-total destruction of the dopamine (DA)-containing neurons of the nigrostriatal bundle. The dysfunctions in animals with these lesions show many parallels with those present in Parkinsonian patients. Among these are the extensive loss of DA neurons in the basal ganglia, neurological impairments including akinesia, paradoxical kinesia in response to activating conditions, and improved sensory-motor function after the administration of DOPA. Moreover, as with patients with preclinical Parkinsonism, 6-HDA-treated rats with less extensive lesions show few or no behavioral dysfunctions, but are unusually sensitive to the akinesia-inducing effects of stress and dopaminergic antagonists. In this review, we summarize the behavioral effects of 6-HDA-induced depletion of striatal DA in the rat and then focus on the compensatory changes that may underlie the preclinical stage of the disorder. These compensations appear to include an increase in the number of active DA neurons, an increase in the release of DA per impulse from residual terminals, and a decrease in the amount of DA inactivated by high affinity uptake. Collectively, these alterations permit a few residual DA neurons to maintain a normal level of control over cellular activity in the striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie E. D., Keller R. W., Jr., and Zigmond M. J. (1988a) Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: Pharmacological and behavior studies.Neuroscience 27, 897–904.

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie E. D., Keller R. W., Jr., and Zigmond M. J. (1988b) Partial damage to central catecholaminergic systems increases release from residual neurons.113th Annual Meeting of the American Neurological Association, Philadelphia, PA, October 2–5.

  • Agid Y., Javoy F., and Glowinski, J. (1973a) Hyperactivity of remaining dopaminergic neurons after partial destruction of the nigro-striatal dopaminergic system in the rat.Nature new Biology 245, 150–151.

    Article  PubMed  CAS  Google Scholar 

  • Agid Y., Javoy F., Glowinski J., Bouvet D., and Sotelo C. (1973b) Injection of 6-hydroxydopamine into the substantia nigra of the rat. II. Diffusion and specificity.Brain Res. 58, 291–301.

    Article  PubMed  CAS  Google Scholar 

  • Altar C. A., Marien M. R., and Marshall J. F. (1987) Time course of adaptations in dopamine biosynthesis, metabolism, and release following nigrostriatal lesions: Implications for behavioral recovery from brain injury.J. Neurochem. 48, 390–399.

    Article  PubMed  CAS  Google Scholar 

  • Berger T. W., Nisenbaum E. S., Stricker E. M. and Zigmond M. J. (1987) Evidence for two functionally distinct neurons within the striatum and their differential sensitivity to dopamine,Neurophysiology of Dopaminergic Systems: Current Status and Clinical Perspectives (Chiodo L. A. and Freeman A. S., eds.), pp. 253–284, Lake Shore Publications, Detroit, MI.

    Google Scholar 

  • Bernheimer H., Birkmayer W., Hornykiewicz O., Jellinger K., and Seitelberger F. (1973) Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations.J. Neurol. Sci. 20, 415–455.

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer H. and Hornykiewicz O. (1965). Herabgesetzte Konzentration der homovanillinsaure im gehirn von parkinsonkranken menschen als ausdruck der storung des zentralen dopaminstoffwechsels.Klin. Wochenschr. 43, 711–715.

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W. and Riederer P. (1983)Parkinson’s disease, Springer, New York, NY.

    Google Scholar 

  • Bloom F. E., Algeria S., Groppetti A., Revuelta A., and Costa E. (1969) Lesions of central norepinephrine terminals with 6-hydroxydopamine: biochemistry and fine structure.Science 166, 1284–1286.

    Article  PubMed  CAS  Google Scholar 

  • Breese G. R., Cooper B. R., and Smith R. D. (1973) Biochemical and behavioral alterations following 6-hydroxydopamine administration into brain,Frontier in Catecholamine Research (Usdin E. and Snyder S. H., eds.), pp. 701–706, Pergamon, New York, NY.

    Google Scholar 

  • Breese G. R., Smith, R. D., Cooper B. R., and Grant L. D. (1973). Alterations in consummatory behavior following intracisternal injection of 6-hydroxydopamine.Pharmacol. Biochem. Behav. 1, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Breese G. R. and Traylor T. D. (1970) Effects of 6-hydroxydopamine on brain norepinephrine and dopamine: Evidence of selective degeneration of catecholamine neurons.J. Pharmacol. Exp. Ther. 174, 413–420.

    PubMed  CAS  Google Scholar 

  • Breese G. R. and Traylor T. D. (1971) Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine.Br. J. Pharmac. 42, 88–99.

    CAS  Google Scholar 

  • Bunney B. S. and Grace A. A. (1978) Acute and chronic haloperidol treatment: Comparison of effects on nigral dopaminergic cell activity.Life Sci. 23, 1715–1728.

    Article  PubMed  CAS  Google Scholar 

  • Butcher L. L., Eastgate S. M., and Hodge G. K. (1974) Evidence that punctate intracerebral administration of 6-hydroxydopamine fails to produce selective neuronal degeneration.Naunyn-Schmiedeberg’s Arch. Pharmacol. 285, 31–70.

    Article  CAS  Google Scholar 

  • Chiodo L. A. and Berger T. W. (1986) Dopamine enhances amino acid-induced excitation and inhibition in the striatum.Brain Res. 375, 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Cooper B. R., Breese G. R., Howard J. L., and Grant L. D. (1972) Effect of central catecholamine alterations by 6-hydroxydopamine on shuttle box avoidance acquisition.Physiol. Behav. 9, 727–731.

    Article  PubMed  CAS  Google Scholar 

  • Doucet G., Descarries L., and Garcia S. (1986) Quantification of the dopamine innervation in adult rat neostriatum.Neuroscience 19, 427–445.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger H. C., Pudritz R. E., McGeer P. L., and McGeer E. G. (1972) Axonal transport in nigro-striatal and nigro-thalamic neurons: Effects of medial forebrain bundle lesions and 6-hydroxydopamine.J. Neurochem. 19, 1697–1708.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger H., Zis A., and McGeer E. (1973) Feeding and drinking deficits after 6-hydroxydopamine administration in the rat: Similarities to the lateral hypothalamic syndrome.Brain Res. 55, 135–148.

    Article  PubMed  CAS  Google Scholar 

  • Grace A. A. (1987) The regulation of dopamine neuron activity as determined by in vivo and in vitro intracellular recordings.Neurophysiology of Dopaminergic Systems: Current Status and Clinical Perspectives (Chiodo L. A. and Freeman A. S., eds.), pp. 1–67. Lake Shore Publications, Detroit, MI.

    Google Scholar 

  • Grace A. A. and Bunney B. S. (1986) Induction of depolarization block in nigral dopamine neurons by repeated administration of haloperidol: Analysis using in vivo intracellular recording.J. Pharmacol. Exp. Ther. 238, 1092–1100.

    PubMed  CAS  Google Scholar 

  • Heffner T. G., Zigmond M. J., and Stricker E. M. (1977) Effects of dopaminergic agonists and antagonists on feeding in intact and 6-hydroxydopaminetreated rats.J. Pharmacol. Exp. Ther. 201, 386–399.

    PubMed  CAS  Google Scholar 

  • Hefti F., Melamed E., and Wurtman R. J. (1980) Partial lesions of the dopaminergic nigrostriatal system in rat brain: Biochemical characterization.Brain Res. 195, 123–137.

    Article  PubMed  CAS  Google Scholar 

  • Heikkila R. E. and Cohen G. (1972) Further studies on the generation of hydrogen peroxide by 6-hydroxydopamine: Potentiation by ascorbic acid.Mol. Pharmacol. 8, 241–248.

    PubMed  CAS  Google Scholar 

  • Hokfelt T. and Ungerstedt U. (1973) Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurons: An electron and fluorescence microscopic study with special reference to intracerebral injection in the nigro-striatal dopamine system.Brain. Res. 60, 269–297.

    Article  PubMed  CAS  Google Scholar 

  • Hollerman J. R., Berger T. W., and Grace A. A. (1986) Compensatory changes in the activity of nigral dopamine cells in response to partial dopamine-depleting lesions.Soc. Neurosci. Abstr. 12, 872.

    Google Scholar 

  • Hollerman J. R. and Grace A. A. (1987) Enhanced susceptibility of dopamine neurons to depolarization block after partial dopamine lesions.Soc. Neurosci. Abstr. 13, 1363.

    Google Scholar 

  • Hollerman J. R. and Grace A. A. (1988) Nigral DA cell recruitment as a compensatory mechanism.Soc. Neurosci. Abstr. 14, 1146.

    Google Scholar 

  • Hollerman J. R. and Grace A. A. (1989) Acute haloperidol administration induces depolarization block of nigral dopamine neurons in rats after partial dopamine lesions.Neurosci. Lett. 96, 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Jacks B. R., De Champlain J., and Cordeau J. P. (1972) Effects of 6-hydroxydopamine on putative transmitter substances in the central nervous system.Eur. J. Pharmacol. 18, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J. and Calne D. B. (1987) Parkinson’s disease: Etiology and treatment,Current Neurology (Appel S. H., ed.), pp. 193–234, Year Book Medical Publisher, Chicago, IL.

    Google Scholar 

  • Keefe, K. A., Salamone J. D., Zigmond M. J., and Stricker E. M. (1989) Paradoxical kinesia in Parkinsonism is not caused by dopamine release: Studies in an animal modelArch. Neurol. in press.

  • Kelly R. S. and Wightman R. M. (1987) Detection of dopamine overflow and diffusion with voltammetry in slices of rat brain.Brain Res. 423, 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa R. M. and Jacobowitz D. M. (1974) Pharmacological action of 6-hydroxydopamine.Pharmacol. Rev. 26, 199–288.

    PubMed  CAS  Google Scholar 

  • Ljungberg T. and Ungerstedt U. (1976) Reinstatement of eating by dopamine agonists in aphagic dopamine denervated rats.Physiol. Behav. 16, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Marshall J. F. (1979) Somatosensory inattention after dopamine-depleting intracerebral 6-OHDA injections: Spontaneous recovery and pharmacological control.Brain Res. 177, 311–324.

    Article  PubMed  CAS  Google Scholar 

  • Marshall J. F., Levitan D., and Stricker E. M. (1976) Activation-induced restoration of sensorimotor functions in rats with dopamine-depleting brain lesions.J. Comp. Physiol. Psychol. 90, 536–546.

    Article  PubMed  CAS  Google Scholar 

  • Marshall J. F. and Teitelbaum P. (1973) A comparison of the eating in response to hypothermic and glucoprivic challenges after nigral 6-hydroxydopamine and lateral hypothalamic electrolytic lesions in rats.Brain Res. 55, 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Marshall J. F. and Ungerstedt U. (1976) Apomorphine-induced restoration of drinking to thirst challenges in 6-hydroxydopamine-treated rats.Physiol. Behav. 17, 817–822.

    Article  PubMed  CAS  Google Scholar 

  • Nisenbaum E. S., Orr W. B. and Berger T. W. (1988) Evidence for two functionally distinct subclasses of neurons within the rat striatum.J. Neurosci. 8, 4138–4150.

    PubMed  CAS  Google Scholar 

  • Nisenbaum E. S., Stricker E. M., Zigmond M. J., and Berger T. W. (1986). Longterm effects of dopamine-depleting brain lesions on spontaneous activity of Type II striatal neurons: relation to behavioral recovery.Brain Res. 398, 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Onn S. P., Berger T. W., Stricker E. M., and Zigmond M. J. (1986) Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: Histochemical and neurochemical analysis.Brain Res. 376, 8–19.

    Article  PubMed  CAS  Google Scholar 

  • Orr W. B., Gardiner T. W., Stricker E. M., Zigmond M. J., and Berger T. W. (1986) Short-term effects of dopamine-depleting brain lesions on spontaneous activity of striatal neurons: relation to local dopamine concentration and behavior.Brain Res. 376, 20–28.

    Article  PubMed  CAS  Google Scholar 

  • Poirier L. J. (1975) Histopathological changes associated with the intracerebral injection of 6-hydroxydopamine (6-HDA) and peroxide (H202) in the cat and the rat.J. Neural Trans. 37, 209–218.

    Article  CAS  Google Scholar 

  • Reader T. A. and Gauthier P. (1984) Catecholamines and serotonin in the rat central nervous system after 6-OHDA, 5-7-DHT and p-CPA.J. Neural Trans. 59, 207–227.

    Article  CAS  Google Scholar 

  • Sachs C. H. and Jonsson G. (1975) Mechanisms of action of 6-hydroxydopamine.Pharmacol. 24, 1–8.

    CAS  Google Scholar 

  • Schoenfeld R. I. and Zigmond M. J. (1973) Behavioural pharmacology of 6-hydroxydopamine,Frontiers in catecholamine research (Usdin E. and Snyder S., eds.), pp. 695–700, Pergamon, New York, NY.

    Google Scholar 

  • Schultz W. and Ungerstedt U. (1978) A method to detect and record from striatal cells of low spontaneous activity by stimulating the corticostriatal pathway.Brain Res. 142, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Snyder A. M., Stricker E. M., and Zigmond M. J. (1985) Stress-induced neurological impairments in an animal model of parkinsonism.Ann. Neurol. 18, 544–551.

    Article  PubMed  CAS  Google Scholar 

  • Snyder G. L., Stachowiak M., Keller R. W., Jr., Stricker E. M., and Zigmond M. J. (1986) Release of endogenous DA and DOPAC from striatal slices after DA-depleting lesions: Effects of stimulation frequency and DA synthesis inhibition.Soc. Neurosci. Abstr. 12, 136.

    Google Scholar 

  • Stachowiak M. K., Keller R. W., Jr., Stricker E. M., and Zigmond M. J. (1987) Increased dopamine efflux from striatal slices during development and after nigrostriatal bundle damage.J. Neurosci. 7, 1648–1654.

    PubMed  CAS  Google Scholar 

  • Stricker E. M. and Zigmond M. J. (1974) Effects of homeostasis of intraventricular injection of 6-hydroxydopamine in rats.J. Comp. Physiol. Psychol. 86, 973–994.

    Article  PubMed  CAS  Google Scholar 

  • Stricker E. M. and Zigmond M. J. (1976) Recovery of function following damage to central catecholamine-containing neurons: a neurochemical model of the lateral hypothalamic syndrome.Progress in Psychobiology and Physiological Psychology, vol. 6 (Sprague J. M. and Epstein A. N., eds.), pp. 121–189, Academic, New York, NY.

    Google Scholar 

  • Thoenen H. and Tranzer J. P. (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine.Naunyn-Schmied. Arch. Pharmacol. Exp. Pathol. 261, 271–288.

    Article  CAS  Google Scholar 

  • Ungerstedt U. (1968) 6-hyroxydopamine-induced degeneration of central monoamine neurons.Eur. J. Pharmacol. 5, 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U. (1971) Adipsia and aphagia after 6-hyroxydopamine-induced degeneration of the nigro-striatal dopamine system.Acta Physiol. Scand. Suppl. 367, 95–122.

    PubMed  CAS  Google Scholar 

  • Uretsky N. J. and Iversen L. L. (1970) Effects of 6-hydroxydopamine on catecholamine-containing neurons in rat brain.J. Neurochem. 17, 269–278.

    Article  PubMed  CAS  Google Scholar 

  • Uretsky N. J., Simmonds M. A., and Iversen L. L. (1971) Changes in the retention and metabolism of3H-I-norepinephrine in rat brain in vivo after 6-hydroxydopamine pretreatment.J. Pharmacol. Exp. Ther. 176, 489–496.

    PubMed  CAS  Google Scholar 

  • Zigmond M. J., Acheson A. L., Stachowiak M. K., and Stricker E. M. (1984) Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical parkinsonism.Arch. Neurol. 41, 856–861.

    PubMed  CAS  Google Scholar 

  • Zigmond M. J. and Stricker E. M. (1973) Recovery of feeding and drinking by rats after intraventricular 6-hydroxydopamine or lateral hypothalamic lesions.Science 182, 717–720.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond M. J. and Stricker E. M. (1974) Ingestive behavior following damage to central dopamine neurons: Implications for homeostasis and recovery of function,Neuropsychopharmacology of Monoamines and Their Regulatory Enzymes (Usdin E., ed.), pp. 385–402, Raven, New York, NY.

    Google Scholar 

  • Zigmond M. J. and Stricker E. M. (1989) Animal models of Parkinsonism using selective neurotoxins: Clinical and basic implications,International Review of Neurobiology (Bradley R. J., ed.), Academic, New York, NY, in press.

    Google Scholar 

  • Zigmond M. J., Stricker E. M., and Berger T. W. (1987) Parkinsonism: Insights from animal models utilizing neurotoxic agents,Experimental Models of Dementing Disorders: A synaptic Neurochemical Perspective (Coyle J. T., ed.), pp. 1–38, Liss, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zigmond, M.J., Berger, T.W., Grace, A.A. et al. Compensatory responses to nigrostriatal bundle injury. Molecular and Chemical Neuropathology 10, 185–200 (1989). https://doi.org/10.1007/BF03159728

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159728

Index Entries

Navigation