Skip to main content
Log in

Effect of Ca2+-homopantothenate and mild hypoxia on some enzyme activities evaluated in subcellular fractions from different rat brain regions

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

The effect of Ca2+-homopantothenate (HOPA) treatment (250 mg/kg for 5 d) has been studied by evaluating the specific activity of enzymes related to: glycolytic pathway (hexokinase, phosphofruc-tokinase, pyrurate kinase, lactate dehydrogenase), tricarboxylic acid cycle (citrate synthase, malate dehydrogenase), mitochondrial electron transfer chain (succinate dehydrogenase, cytochrome oxidase), NADH redox state (NADH cytochromec reductase), acetylcholine metabolism (acetylcholinesterase), and glutamate metabolism (glutamate dehydrogenase). The enzymatic activity assays were performed on homogenatein toto, nonsynaptic mitochondria and synaptosomes isolated from: cerebral cortex, hippocampus, striatum, hypothalamus, medulla oblongata, and cerebellum of normoxic rats and rats submitted to intermittent normobaric hypoxia (90:10, N2:O2). In normoxic rats, HOPA was unable to induce any modification. Hypoxiaper se induced a decrease in the activity of synaptosomal cytochrome oxidase in cerebral cortex, hippocampus, and cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benzi G., Agnoli A., Dagani F., Ruggieri S., and Villa R. F. (1979) Effect of phenobarbital on cerebral energy state and metabolism.Stroke 10, 733–735.

    PubMed  CAS  Google Scholar 

  • Benzi, G., Villa, R. F., Dossena M., Vercesi L., Gorini A., and Pastoris O. (1984) Cerebral endogenous substrate utilization during the recovery period after profound hypoglycemia.J. Neurosci. Res. 11, 437–450.

    Article  PubMed  CAS  Google Scholar 

  • Bielicki L. and Krieglstein J. (1976) Decreased GABA and glutamate concentration in rat brain after treatment with 6 aminonicotinamide.Naunyn Schmiedebergs Arch. Pharmacol. 294, 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Breivik H., Safar, P., Sands P., Lind B., Lust P., Mullie A., Orr M., Renck, H., and Snyder J. W. (1978) Clinical feasibility trials of barbiturate therapy after cardiac arrest.Crit. Care Med. 6, 228–244.

    Article  PubMed  CAS  Google Scholar 

  • Brody T. M. and Bain J. A. (1954) Barbiturates and oxidative phosphorylation.J. Pharmacol. 110, 148–156.

    CAS  Google Scholar 

  • Chapman A. G., Nordstrom C. H., and Siesjö B. K. (1978) Influence of phenobarbital anaesthesia on carbohydrate and amino acid metabolism in rat brain.Anesthesiology 48, 175–188.

    Article  PubMed  CAS  Google Scholar 

  • Corkill G., Sivalingam S., Reitan J. A., Gilroy B. A., and Helphrey M. G. (1978) Dose dependency of the post-insult protective effect of pentobarbital in the canine experimental stroke model.Stroke 9, 10–15.

    PubMed  CAS  Google Scholar 

  • Dagani F., Marzatico F., Curti D., Zanada F., and Benzi G. (1984) Effect of prolonged and intermittent hypoxia on some cerebral enzymatic activities related to energy transduction.J. Cereb. Blood Flow Metabol. 4, 615–624.

    CAS  Google Scholar 

  • Dagani F., Marzatico F., and Curti D. (1988) Oxidative metabolism of nonsynaptic mitochondria isolated from rat brain hippocampus: a comparative regional study.J. Neurochem. 50, 1233–1236.

    Article  PubMed  CAS  Google Scholar 

  • Demopoulos H. B., Flamm E. S., Seligman M. L., Jorgensen E., and Ransohoff J. (1977) Antioxidant effects of barbiturates in model membranes undergoing free radical damage.Acta Neurol. Scand. 64, 152–153.

    CAS  Google Scholar 

  • Dorofeev B. F. and Korablev M. V. (1979)VINITI 2560, 14.

    Google Scholar 

  • Dunlop D. S. (1978) Measuring protein synthesis and degradation rates in CNS tissue,Research Methods in Neurochemistry, vol. 4 (Marks N. and Rodnight R., (eds.), pp. 91–138, Plenum, New York.

    Google Scholar 

  • Fischer E. G., Ames A., III, Hedley-Whyte E. T., and O’Gorman S. (1977) Reassessment of cerebral capillary changes in acute global ischemia and their relationship to the “no-reflow” phenomenon.Stroke 8, 36–39.

    PubMed  CAS  Google Scholar 

  • Hossman K.-A. (1982) Treatment of experimental cerebral ischemia.J. Cereb. Blood Flow Metabol. 2, 275–297.

    Google Scholar 

  • Jones D. P. (1981) Hypoxia and drug metabolism.Biochem. Pharmacol. 30, 1019–1023.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Marzatico F., Curti D., Dagani F., and Benzi G. (1986) Effect of hypoxia on brain energy metabolism during aging.Ital. J. Biochem. 35, 123A-125A.

    CAS  Google Scholar 

  • Marzatico F., Dagani F., Curti D., and Benzi G. (1987) Phenobarbital and 6-aminonicotinamide effect on cerebral enzymatic activities related to energy transduction in different rat brain areas.Neurochem. Res. 12, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Meyer F. B., Sundt T. M., Jr., Yanagihara T., and Anderson R. E. (1987) Focal cerebral ischemia: pathophysiologic mechanisms and rationale for future avenues of treatment.Mayo Clinic Proc. 62, 35–55.

    CAS  Google Scholar 

  • Nishizawa Y. and Matsuzaki F. (1969) The antagonistic action of homopantothenic acid against pantothenic acid.J. Vitamin 15, 8–25.

    PubMed  CAS  Google Scholar 

  • Nishizawa Y., Kodama T., and Tsujino G. (1968a) Effect of gamma-aminobutyric acid derivates, especially homopantothenic acid, on excitability of the brain.J. Vitamin 14, 331–344.

    PubMed  CAS  Google Scholar 

  • Nishizawa Y., Kodama T., Ishida R., Adachi S., and Kowa Y. (1968b) Electrophysiolog investigation of homopantothenic acid.J. Vitamin 14, 345–353.

    PubMed  CAS  Google Scholar 

  • Rehncrona S., Rosen I., and Siesjö B. K. (1980) Excessive cellular acidosis: an important mechanism of neuronal damage in the brain?Acta Physiol. Scand. 110, 435–437.

    Article  PubMed  CAS  Google Scholar 

  • Sawa M., Kaji S., Izumi T. and Baba M. (1966)Seichin. Shinkeigaku Zasshi (Japan)68, 1398.

    CAS  Google Scholar 

  • Siesjö B. K. (1981) Cell damage in the brain: a speculative synthesis.J. Cereb. Blood Flow Metabol. 1, 155–185.

    Google Scholar 

  • Sundt T. M., Jr. and Davis D. H. (1980) Reactions of cerebrovascular smooth muscle to blood and ischemia: primary versus secondary vasospasm,Arterial Spasm (Wilkies R. H., ed.), pp. 244–250, Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  • Sutinskii I. A., Kopelevich V. M., Konovalova N., Nikitina Z. S., and Blagova O. E. (1977) Khim Biokhim Funk’s Primen Pantotenovoi Disloty,Mater. Grodn. 4th Symp. (Moiseenok A. G., Izd. Nauka Tekhnika, eds.), p. 140, Minsk, USSR.

    Google Scholar 

  • Terawaki T., Hirayama K., Iamamura M., Nagata Y., and Kawabata S. (1967) Studies on the clinical effect of homopantothenic acid for children with mental and physical disorders.Vitamins,36, 151–175.

    Google Scholar 

  • Watson B. D., Goldsberg W. J., Santiso M., Yoshida S., and Ginsberg M. D. (1984) Lipid peroxidation in vivo induced by reversible global ischemia in rat brain.J. Neurochem. 42, 268–274.

    Article  PubMed  CAS  Google Scholar 

  • Welsh F. A., Ginsberg M. D., Rieder W., and Budd W. W. (1980) Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. II. Regional metabolite levels.Stroke 11, 335–363.

    Google Scholar 

  • Wieloch T. and Siesjö B. K. (1982) Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids.Pathol. Biol. (Paris)30, 269–277.

    CAS  Google Scholar 

  • Yabuuchi H. and Kato M. (1966) Clinical application of homopantothenic acid in mentally retarded children.Vitamins 33, 633–635.

    Google Scholar 

  • Yoshida S., Inoh S., Asano T., Sano K., Kubota M., Shinazaki H., and Ueta N. (1980) Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain: lipid peroxidation as a possible cause of postischemic injury.J. Neurosurg. 53, 323–331.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagani, F., Curti, D. & Marzatico, F. Effect of Ca2+-homopantothenate and mild hypoxia on some enzyme activities evaluated in subcellular fractions from different rat brain regions. Molecular and Chemical Neuropathology 10, 157–169 (1989). https://doi.org/10.1007/BF03159726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159726

Index Entries

Navigation