Skip to main content

Advertisement

Log in

The role of free radicals and eicosanoids in the pathogenetic mechanism underlying ischemic brain edema

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Results of our consecutive study on the pathogenetic mechanism underlying ischemic brain edema are summarized in this paper. Pertinent findings are as follows: (1) there is a close correlation between the influxes of water and sodium following ischemia; (2) the edema fluid can be regarded as the ultrafiltrate of serum; (3) there is a significant increase in the brain content of HETEs following ischemia; (4) the lipoxygenase activity of brain microvessels is increased following ischemia; (5) the lipoxygenase activity as well as the Na+, K+-ATPase activity of brain microvessels are enhanced by a hydroperoxide, 15-HPETE; (6) inhibition of Na+,K+-ATPase of brain microvessels by intraarterial infusion of ouabain resulted in a significant decrease in edema formation; and (7) not the cyclooxygenase, but the lipoxygenase pathway seems to be involved in the enhancement of microvessel Na+,K+-ATPase.

Lipoxygenase(s) and Na+−K+-ATPase of brain microvessels, the activities of which are enhanced by an increased level of free radicals and/or hydroperoxides, may play a significant role in the occurrence of ischemic brain edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel-Halim M. S., von Holst H., Meyerson B., Sachs C., and Anggard E. (1980) Prostaglandin profiles in tissue and blood vessels from human brain.J. Neurochem. 34, 1331–1333.

    Google Scholar 

  • Aritake K., Wakai S., Asano T., and Takakura K. (1983) Peroxidation of arachidonic acid and brain edema.Brain and Nerve 35, 965–973.

    PubMed  CAS  Google Scholar 

  • Asano T. (1983) Metabolic changes of membrane lipids following cerebral ischemia with special reference to the possible pathways of arachidonate metabolism.Brain and Nerve 35, 41–50.

    PubMed  CAS  Google Scholar 

  • Asano T., Johshita H., Koide T., and Takakura K. (1984) Amelioration of ischemic cerebral oedema by a free radical scavenger, AVS, 1,2-Bis (nicotinamide)-propane. An experimental study using a regional ischaemia model in cats.Neurol. Res. 6, 163–168.

    PubMed  CAS  Google Scholar 

  • Asano T., Gotoh O., Koide T., and Takakura K. (1985a) Ischemic brain edema following occlusion of the middle cerebral artery in the rat. II. Alteration of the eicosanoid synthesis profile of brain microvessels.Stroke 16, 110–113.

    PubMed  CAS  Google Scholar 

  • Asano T., Johshita H., Gotoh O., Usui M., Koide T., Shigeno T., and Takakura K. (1985b) The pathomechanism underlying ischemic brain edema: The role of Na,K-ATPase of the brain microvessel.Neurol. Surg. 13, 1147–1159.

    CAS  Google Scholar 

  • Asano T., Shigeno T., Johshita H., Usui M., and Hanamura T. (1987) A novel concept on the pathogenetic mechanism underlying ischaemic brain oedema: relevance of free radicals and eicosanoids.Acta Neurochir. 41, 85–94.

    CAS  Google Scholar 

  • Astrup J., Sorensen P. M., and Sorensen H. R. (1981) Oxygen and glucose consumption related to Na+−K+ transport in canine brain.Stroke 12, 726–730.

    PubMed  CAS  Google Scholar 

  • Au A. M., Chan P. H., and Fishman R. A. (1985) Stimulation of phospholipase A2 activity by oxygen-derived free radicals in isolated brain capillaries.J. Cell. Biochem. 27, 449–453.

    PubMed  CAS  Google Scholar 

  • Baethmann A., Oettinger W., Rothenfusser W., Kempski O., Unterberg A., and Geiger G. (1980) Brain edema factors: current state with particular reference to plasma constituents and glutamate,Advances in Neurology, (Cervos-Navarro F. and Ferszt R., eds.), Raven, New York, NY, andAdv. Neurol. 28, 171–196.

    Google Scholar 

  • Barber A. A., and Bernheim F. (1967) Lipid peroxidation: its measurement occurrence, and significance in animal tissues.Adv. Gerontol. Res. 2, 355–403.

    PubMed  CAS  Google Scholar 

  • Bazan N. G., Jr. (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain.Biochim. Biophys. Acta 218, 1–10.

    PubMed  CAS  Google Scholar 

  • Betz A. L., Firth J. A., and Goldstein g.. (1980) Polarity of the blood-brain barrier: Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells.Brain Res. 192, 17–28.

    PubMed  CAS  Google Scholar 

  • Betz A. L. (1983a) Sodium transport in capillaries isolated from rat brain.J. Neurochem. 41, 1150–1157.

    PubMed  CAS  Google Scholar 

  • Betz A. L. (1983b) Sodium transport from blood to brain: Inhibition by furosemide and amiloride.J. Neurochem. 41, 1158–1164.

    PubMed  CAS  Google Scholar 

  • Borst P., Loos J. A., Christ E. E. and Slater E. C. (1962) Uncoupling activity of long-chain fatty acids.Biochim. Biophys. Acta 62, 509–518.

    PubMed  CAS  Google Scholar 

  • Bradbury M. (1979)The Concept of a Blood-Brain Barrier. John Wiley, New York, NY.

    Google Scholar 

  • Brendel K., Meezan E., and Carlson E. L. (1974) Isolated brain microvessels: A purified metabolically active preparation from bovine cerebral cortex.Science 185, 953–955.

    PubMed  CAS  Google Scholar 

  • Brunson B., Robertson J. T., Morgan H., and Friedman B. I. (1973) The measurement of cerebral infarction edema with sodium 22.Stroke 4, 461–464.

    PubMed  CAS  Google Scholar 

  • Cerchiari E. L., Hoel T. M., Safar P., and Sclabassi R. J. (1987) Protective effects of combined superoxide dismutase and degeroxamine on recovery of cerebral blood flow and function after cardiac arrest in dogs.Stroke 18, 869–878.

    PubMed  CAS  Google Scholar 

  • Chan P. H. and Fishman R. A. (1978) Brain edema: Induction in cortical slices of polyunsaturated fatty acids.Science 201, 358–360.

    PubMed  CAS  Google Scholar 

  • Chan P. H. and Fishman R. A. (1980) Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling.J. Neurochem. 35, 1004–1007.

    PubMed  CAS  Google Scholar 

  • Chan P. H., Kerlan R., and Fishman R. A. (1983a) Reductions of γ-aminobutyric acid and glutamate uptake and (Na++K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid.J. Neurochem. 40, 309–316.

    PubMed  CAS  Google Scholar 

  • Chan P. H., Fishman R. A., Caronna J., Schmidley J. W., and Prioleau G., Lee J. (1983b) Induction of brain edema following intracerebral injection of arachidonic acid.Ann. Neurol. 13, 625–632.

    PubMed  CAS  Google Scholar 

  • Chan P. H., Schmidley J. W., Fishman R. A., and Longar S. M. (1984) Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals.Neurology 34, 315–320.

    PubMed  CAS  Google Scholar 

  • Chan P. H., Fishman R. A., Longar S., Chen S., and Yu A. (1985) Cellular and molecular effects of polyunsaturated fatty acids in brain ischemia and injury.Prog. Brain Res. 63, 227–235.

    PubMed  CAS  Google Scholar 

  • Chance B., Sies H., and Boveris A. (1979) Hydroperoxide metabolism in mammalian organs.Physiol. Rev. 59, 527–605.

    PubMed  CAS  Google Scholar 

  • Chaplin E. R., Free R. G., and Goldstein G. W. (1981) Inhibition by steroids of the uptake of potassium by capillaries isolated from rat brain.Biochem. Pharmacol. 30, 241–245.

    PubMed  CAS  Google Scholar 

  • Cornog J. L., Jr., Gonatas N. K., and Frierman J. R. (1967) Effects of intracerebral injection of ouabain on the fine structure of rat cerebral cortex.Am. J. Pathol. 51, 573–590.

    PubMed  CAS  Google Scholar 

  • Davson H. (1956)Physiology of the Ocular and Cerebrospinal Fluids, J. & A. Churchill Ltd., London.

    Google Scholar 

  • Dawson R. M. C., Hemington N., and Irvine R. F. (1985) The inhibition of diacylglycerol-stimulated intracellular phospholipases by phospholipids with a phosphocholine-containing polar group.Biochem. J. 230, 61–68.

    PubMed  CAS  Google Scholar 

  • Del Maestro R. F. (1980) An approach to free radicals in medicine and biology.Acta Physiol. Scand. 492, 153–169.

    Google Scholar 

  • Demopoulos H. B., Flamm E. S., Seligman M. L., Poser, R., Pietronigro O., and Ransohoff J. (1975) Molecular pathology of lipids in CNS membranes,Oxygen and Physiological Function (Joebsis E. F., ed.), pp. 491–508, Professional Information Library, Dallas, TX.

    Google Scholar 

  • Demopoulos H. B., Flamm E. S., Pietronigro D. D., and Seligman M. L. (1980) The free radical pathology and the microcirculation in the major central nervous system disorders.Acta Physiol. Scand. 492, 91–119.

    CAS  Google Scholar 

  • Dempsey R. J., Roy M. W., Meyer K., Cowen D. E., Tai, H. H. (1986) Development of cyclooxygenase and lipoxygenase metabolites of arachidonic acid after transient cerebral ischemia.J. Neurosurg. 64, 118–124.

    PubMed  CAS  Google Scholar 

  • Dietrich W. D., Busto R., and Ginsberg M. D. (1984) Cerebral endothelial microvillia: Formation following global forebrain ischemia.J. Neuropathol. Exp. Neurol. 43, 72–83.

    PubMed  CAS  Google Scholar 

  • Eisenberg H. M. and Suddith R. L. (1979) Cerebral vessels have the capacity to transport sodium and potassium.Science 206, 1083–1085.

    PubMed  CAS  Google Scholar 

  • Enseleit W. H., Domer F. R., Jarrot D. M., and Baricos W. H. (1984) Cerebral phospholipid content and Na+, K+-ATPase activity during ischemia and postischemic reperfusion in the mongolian gerbil.J. Neurochem. 43, 320–327.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Farooqui T., Yates A. J., and Horrocks L. A. (1988) Regulation of protein kinase C activity by various lipids.Neurochem. Res. 13, 499–511.

    PubMed  CAS  Google Scholar 

  • Fridovich I. (1976)Oxygen radicals, hydrogen peroxide and oxygen toxicity, Free Radicals in Biology (Pryor W. ed.), pp. 239–277, Academic, New York, NY.

    Google Scholar 

  • Fujita Y. Shingu T., Kurihara M., Miyake H., Kono T., and Mori K (1985) Na−K-activated adenosinee triphosphatase activity and lipoperoxide metabolites in microvessels and parenchymas of the ischemic brain,Brain Edema (Inaba Y., Klatzo I., and Spatz M., eds.), pp. 344–353, Springer-Verlag, Berlin.

    Google Scholar 

  • Garcia J. H., Cox, J. V., and Hudgins W. R. (1971) Ultrastructure of the microvasculature in experimental cerebral infarction.Acta Neuropath.,18, 273–285.

    PubMed  CAS  Google Scholar 

  • Gaudet R. J. and Levine L. (1980a) Effect of unilateral common carotid artery occlusion on levels of prostaglandins D2, F, and 6-keto-prostaglandin F in gerbil brain.Stroke 11, 648–652.

    PubMed  CAS  Google Scholar 

  • Gaudet R. J., Alam I., and Levine L. (1980b) Accumulation of cyclooxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion.J. Neurochem. 35, 653–658.

    PubMed  CAS  Google Scholar 

  • Gazendam J., Go K. G., and Van Zanten A. K. (1979) The effect of intracerebral ouabain administration on the composition of edema fluid isolated from cats with cold-induced brain edema.Brain Res. 175, 279–290.

    PubMed  CAS  Google Scholar 

  • Ginsberg M. D., Mela L., Wrobel-Kuhl K., and Reivich M. (1977) Mitochondrial metabolism following bilateral cerebral ischemia in the gerbil.Ann. Neurol. 1, 519–527.

    PubMed  CAS  Google Scholar 

  • Goehlert U. G., Ng Ying Kin N. M. K., and Wolfe L. S. (1981) Biosynthesis of prostacyclin in rat cerebral microvessels and the choroid plexus.J. Neurochem. 36, 1192–1201.

    PubMed  CAS  Google Scholar 

  • Goetzl E. J. (1981) Oxygenation products of arachidonic acid as mediators of hypersensitivity and inflammation.Med. Clin. North Am. 65, 809–828.

    PubMed  CAS  Google Scholar 

  • Goldstein G. W. (1979) Relation of potassium transport to oxidative metabolism in isolated brain capillaries.J. Physiol. (London)286, 185–195.

    CAS  Google Scholar 

  • Goldstein G. W. and Betz A. L. (1983). Recent advances in understanding brain capillary function.Ann. Neurol. 14, 389–395.

    PubMed  CAS  Google Scholar 

  • Gotoh O., Koide T., Asano T., Takakura K., Tamura A., and Sano K. (1984) A model to study ischemic brain edema in rats and the influence of drugs,Recent Progress in the Study and Therapy of Brain Edema (Go K. G. and Baethmann A., eds.), pp. 499–508, Plenum, New York, NY.

    Google Scholar 

  • Gotoh O., Asano T., Koide T., and Takakura K. (1985) Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I. The time courses of brain water, sodium, and potassium contents and blood-brain barrier permeability to125-I-albumin.Stroke 16, 101–109.

    PubMed  CAS  Google Scholar 

  • Greene D. A. and Lattimer S. A. (1986) Protein kinase C agonists acutely normalize decreased ouabain-inhibitable respiration in diabetic rabbit nerve: Implications for (Na, K)-ATPase regulation and diabetic complications.Diabetes 35, 242–245.

    PubMed  CAS  Google Scholar 

  • Halliwell B. and Gutteridge J. M. C. (1984) Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy.Lancet I, 1396, 1397.

    Google Scholar 

  • Hanamura T., Asano T., Johshita H., and Takakura K. (1989) Prostaglandin profiles in relation to local circulatory changes following focal cerebral ischemia in cats.Stroke, in press.

  • Hertz L. (1981) Features of astrocytic function apparently involved in the response of central nervous tissue to ischemia-hypoxia.J. Cereb. Blood Blow Metabol. 1, 143–153.

    CAS  Google Scholar 

  • Hilal S. K., Maudsley A. A., Simon H. E., Perman W. H., Bonn J., Mawad M. E., Silver A. J., and Ganti S. R. (1983) In vivo NMR imaging of tissue sodium in the intact cat before and after acute cerebral stroke.Am. J. Neuroradiol. 4, 245–249.

    PubMed  CAS  Google Scholar 

  • Hillered L. and Ernstar L. (1983) Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicals.J. Cerebr. Blood Flow Metabol. 3, 207–214.

    CAS  Google Scholar 

  • Hillered L., Smith M.-L. and Siesjo B. K. (1985) Lactic acidosis and recovery of mitochondrial function following forebrain ischemia in the rat.J. Cerebr. Blood Flow Metab. 5, 259–266.

    CAS  Google Scholar 

  • Hossmann K.-A. and Takagi S. (1976) Osmolality of brain in cerebral ischemia.Exp. Neurol. 51, 124–131.

    Google Scholar 

  • Hossmann K.-A. (1985) The pathophysiology of ischemic brain edema,Brain Edema, Inaba Y., Klatzo I., and Spatz M., eds.), pp. 367–384, Springer-Verlag, Berlin.

    Google Scholar 

  • Hunter F. E., Gebicki J. M., Hoffsten P. E., Weinstein J., and Scott A. (1963) Swelling and lysis of rat liver mitochondria induced by ferrousions.J. Biol. Chem. 238, 828–835.

    PubMed  CAS  Google Scholar 

  • Hunter F. E., Jr. Scott A., Hoffsten P. E., Guerra F., Weinstein J., Schneider A., Schutz B., Fink J., Ford L., and Smith E. (1964a) Studies on the mechanism of ascorbate-induced swelling and lysis of isolated liver mitochondria.J. Biol. Chem. 239, 604–613.

    PubMed  CAS  Google Scholar 

  • Hunter E. E., Jr., Scott, A., Hoffsten P. E., Gebicki J. M., Weinstein J., and Schneeiderr A. (1964b) Studies on the mechanism of swelling, lysis, and disintegrations of isolated liver mitochondria exposed to mixtures of oxidized and reduced glutathione.J. Biol. Chem. 239, 614–621.

    PubMed  CAS  Google Scholar 

  • Ikeda M., Yoshida S., Busto R., Santiso M., and Ginsberg M. D. (1986) Polyphosphoinosidides as a probable source of brain free fatty acids accumulated at the onset of ischemia.J. Neurochem.,47, 123–132.

    PubMed  CAS  Google Scholar 

  • Ishii S., Tsuji D. H., Ozawa K., Kondo Y., Evans J. P. (1967) Brain edema. Some clinical and experimental correlation,Brain Edema (Klatzo I. and Seitelberger F., eds.), pp. 32–66, Springer-Verlag, New York, NY.

    Google Scholar 

  • Ito U., Go K. G., Walker J. T., Jr., Spatz M., and Klatzo I (1976) Experimental cerebral ischemia in mongolian gerbils. III. Behaviour of the blood-brain barrier.Acta Neuropathol. 34, 1–6.

    PubMed  CAS  Google Scholar 

  • Johshita H., Asano T., Hanamura T., and Takakura K. (1989) The role of cyclooxygenase pathway in the pathogenesis of ischemic brain edema following MCA occlusion in cats.Stroke, in press.

  • Kalimo H., Olsson Y., Paljarvi L., and Soderfeldt B. (1982) Structural changes in brain tissue under hypoxic-ischemic conditions.J. Cereb. Blood Flow Metabol. 2, S19-S22.

    Google Scholar 

  • Katzman R., Clasen R., Klatzo I., Meyer J. S., Pappius H. M., and Waltz A. G., (1977) Report of Joint Committee from Stroke Resources. IV. Brain Edema in Stroke. Study Group on Brain Edema In Stroke.Stroke 8, 512–540.

    PubMed  CAS  Google Scholar 

  • Kempski O., Staub F., Jansen M., Schoedel F., and Baethmann A. (1988) Glial swelling during extracellular acidosis in vitro.Stroke 19, 385–392.

    PubMed  CAS  Google Scholar 

  • Kimelberg H. K. and Bourke R. S. (1984) Mechanisms of astrocytic swelling,Cerebral Ischemia (Bes A., Braquet P., Paoletti R., and Siesjo B. K., eds.), pp. 131–146, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Kiwak K. J., Moskowitz M. A., and Levine L. (1985) Leukotriene production in gerbil brain after ischemic insult, subarachnoid hemorrhage, and concussive injury.J. Neurosurg. 62, 865–869.

    PubMed  CAS  Google Scholar 

  • Klatzo I. (1967) Neuropathological aspects of brain edema: Presidential Address.J. Neuropathol. Exp. Neurol. 26, 1–14.

    PubMed  CAS  Google Scholar 

  • Kogure K., Busto R., and Scheinberg P. (1981) The role of hydrostatic pressure in ischemic brain edema.Ann. Neurol. 9, 273–282.

    PubMed  CAS  Google Scholar 

  • Kogure K., Ara I. H., Abe K., and Nakano M. Free Radical damage of the brain following ischemia.Prog. Brain Res. 63, 237–259.

  • Koide T., Gotoh O., Asano T., and Takakura K. (1985) Alterations of the eicosanoid synthetic capacity of rat brain microvessels following ischemia: Relevance to ischemic brain edema.J. Neurochem. 44, 85–93.

    PubMed  CAS  Google Scholar 

  • Koide T., Asano T., Matsushita H., and Takakura K. (1986) Enhancement of ATPase activity by a lipid peroxide of arachidonic acid in rat brain microvessels.J. Neurochem. 46, 235–242.

    PubMed  CAS  Google Scholar 

  • Kontos H. A., Povlishock J. T., Dietrich W. D., Magiera L. J., and Ellis E. F. (1980) Cerebral arteriolar damage by arachidonic acid and prostaglandin G2.Science 209, 1242–1245.

    PubMed  CAS  Google Scholar 

  • Kontos H. A. (1985) Oxygen radicals in cerebral vascular injury.Circ. Res. 57, 142–151.

    PubMed  CAS  Google Scholar 

  • Kontos H. A., Wei E. P., Ellis E. F., Jenkins L. W., Povlishock J. T., Rowe G. T., and Hess M. L. (1985) Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats.Circ. Res. 57, 142–151.

    PubMed  CAS  Google Scholar 

  • Kovachich G. B. and Mishra O. P. (1980) Lipid peroxidation in rat brain cortical slices as measured by the thiobarbituric acid test.J. Neurochem. 35, 1449–1452.

    PubMed  CAS  Google Scholar 

  • Kovachich G. B. and Mishra O. P. (1981) Partial inactivation of Na, K-ATPase in cortical brain slices incubated in normal Krebs-Ringer phosphate medium at 1 and 10 atm oxygen pressures.J. Neurochem. 36, 333–335.

    PubMed  CAS  Google Scholar 

  • Kuehl F. A. and Egan R. W. (1980) Prostaglandins, arachidonic acid, and inflammation.Science 210, 978–984.

    PubMed  CAS  Google Scholar 

  • Lands W. E. M., Kulmacz R. J., and Marshall P. J. (1984) Lipid peroxide actions in the regulation of prostaglandin biosynthesis,Free Radicals in Biology, vol. VI (Pryor W. A., ed.), pp. 39–63, Academic, Orlando, FL.

    Google Scholar 

  • Lehninger A. L. and Remmert L. F. (1959) An endogenous uncoupling and swelling agent in liver mitochondria and its enzymic formation.J. Biol. Chem. 243, 2459–2464.

    Google Scholar 

  • Levasseur J. E., Kontos H. A., and Ellis E. F. (1985) Reduction in cerebral arteriolar oxygen consumption by arachidonate.Am. J. Physiol. 248, H534-H539.

    PubMed  CAS  Google Scholar 

  • Lo W. D. and Betz L. (1986) Oxygen free-radical reduction of brain capillary rubidium uptake.J. Neurochem. 46, 394–398.

    PubMed  CAS  Google Scholar 

  • Lo W. D., Betz A. L., Schielke G. P., and Hoff J. T. (1987) Transport of sodium from blood to brain in ischemic brain edema.Stroke 18, 150–157.

    PubMed  CAS  Google Scholar 

  • Mabe H., Suzuka T., Nagai H., Nagai H., and Koda A. (1988) Brain tissue leukotrienes in cerebral ischemia and effect of inhibitor of SRS-A release on postischemic cerebral edema.Brain and Nerve 40, 673–678.

    PubMed  CAS  Google Scholar 

  • MacKnight A. D. C. and Leaf A. (1977) Regulation of cellular volume.Physiological Reviews 57, 510–573.

    PubMed  CAS  Google Scholar 

  • MacMillan V. (1982) Cerebral Na+, K+-ATPase activity during exposure to and recovery from acute ischemia.J. Cereb. Blood Flow Metab. 2, 457–465.

    PubMed  CAS  Google Scholar 

  • MacMillan V. and Shankaran R. (1984) Influence of lactate accumulation on Na, K-ATPase activity of ischemic and post-ischemic brain.Brain Res. 303, 125–132.

    PubMed  CAS  Google Scholar 

  • Majewska M. D., Strosznajder J., and Lazarewicz J. (1978) Effect of ischemic anoxia and barbiturate anesthesia on free radical oxidation of mitochondrial phospholipids.Brain Res. 158, 423–434.

    PubMed  CAS  Google Scholar 

  • Matsui T., Basugi N., Asano T., and Takakura K. (1984) The effect of indomethacin on ischemic brain edema: A study using cat middle cerebral artery occlusion combined with recirculation.Neurol. Med. Chir. 24, 5–12.

    CAS  Google Scholar 

  • Matsuoka Y. and Hossman K.-A. (1982) Cortical impedance and extracellular volume changes following middle cerebral artery occlusion in cats.J. Cereb. Blood Flow Metab. 2, 466–474.

    PubMed  CAS  Google Scholar 

  • McKnight R. C., Hunter, F. E., and Oehlert W. H. (1965) Mitochondrial membrane ghosts produced by lipid peroxidation induced by ferrousion.J. Biol. Chem. 240, 3439–3446.

    PubMed  CAS  Google Scholar 

  • Meier-Ruge W., Gygaz P., Iwangoff P., Schieweck C. H., and Wolff J. (1974) The significance of pericapillary astroglia for cerebral cortical blood flow and EED activity,Pathology of Cerebral Microcirculation (Cervos-Navarro J., ed.), pp. 235–243, Walter de Gruyter, Berlin.

    Google Scholar 

  • Minamisawa H., Terashi A., Katayama Y., Kanda Y., Shimizu J., Shiratori T., Inamura K., Kaseki H., and Yoshino Y. (1988) Brain eicosanoid levels in spontaneously hypertensive rats after ischemia with reperfusion: Leukotriene C4 as a possible cause of cerebral edema.Stroke 19, 372–377.

    PubMed  CAS  Google Scholar 

  • Moskowitz M. A., Kiwak K. J., Hekiman K., and Levine L. (1984) Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion.Science 224, 886–889.

    PubMed  CAS  Google Scholar 

  • Mrsulja B. B. and Kjurjicic B. M. (1979) Biochemical characteristics of cerebral capillaries.Adv. Exp. Med. Biol. 131, 29–43.

    Google Scholar 

  • Mrsulja B. B., Djuricic B. M., Cvejic V., Mrsulja B. J., Abe K., Spatz M., and Klatzo I. (1980) Biochemistry of experimental ischemic brain edema.Adv. Neurol. 28, 217–230.

    PubMed  CAS  Google Scholar 

  • Natale J. E., Schott R. J., Hall E. D., Braughler J. M., and D’Alecy L. G. (1988) Effect of the aminosteroid U74006F after cardiopulmonary arrest in dogs.Stroke 19, 1371–1378.

    PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1984) Turnover of inositol phospholipids and signal transduction.Science 225, 1365–1370.

    PubMed  CAS  Google Scholar 

  • Nordstrom C. H., Rehncrona S., and Siesjo B. K. (1978) Restitution of cerebral energy state, as well as of glycolytic metabolites, citric acid cycle intermediates and associated amino acids after pronounced incomplete ischemia.J. Neurochem. 30, 479–486.

    PubMed  CAS  Google Scholar 

  • O’Brien M. D., Walz A. G., and Jordan M. M. (1970) Ischemic cerebral edema: Distribution of water in brains of cats after occlusion of the middle cerebral artery.Arch. Neurol. 30, 456–460.

    Google Scholar 

  • Oldendorf W. H. Measurement of brain uptake of radiolabelled substances using a tritiated water internal standard.Brain Res. 24, 372–376.

  • Ozawa K., Seta K., Takeda H., Ando K., Handa H., and Araki, C. (1966) On the isolation of mitochondria with high respiratory control from rat brain.J. Biochem. 59, 501–510.

    PubMed  CAS  Google Scholar 

  • Ozawa K., Seta K., Araki H., and Handa H. (1967) The effect of ischemia on mitochondrial metabolism.J. Biochem. 61, 512–514.

    PubMed  CAS  Google Scholar 

  • Ozawa K., Kitamura O., Ohsawa T., Murata T., and Honjo I. (1969) Mitochondrial vulnerability and lipid metabolism.J. Biochem. 66, 361–367.

    PubMed  CAS  Google Scholar 

  • Palmer G. C., Palmer S. J., Christie-Pope B. C., Callahan A. S., Taylor M. D., and Eddy L. J. (1985) Classification of ischemic-induced damage to Na, K-ATPase in gerbil forebrain. Modification by therapeutic agents.Neuropharmacology 24, 509–516.

    PubMed  CAS  Google Scholar 

  • Plum F. and Posner J. B. (1963) Edema and necrosis in experimental cerebral infarction.Arch. Neurol. 9, 563–579.

    Google Scholar 

  • Pulsinelli W. A., Waldman S., Rawlinson D., and Plum F. (1982) Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat.Neurology 32, 1239–1246.

    PubMed  CAS  Google Scholar 

  • Rehncrona S., Mela L., and Siesjo B. K. (1979) Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia.Stroke 10, 437–446.

    PubMed  CAS  Google Scholar 

  • Rehncrona S., Westerberg E., Akesson B., and Siesjo B. K. (1982) Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia.J. Neurochem. 38, 84–93.

    PubMed  CAS  Google Scholar 

  • Samuelsson B. (1983) Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation.Science 220, 568–575.

    PubMed  CAS  Google Scholar 

  • Sasaki T., Nakagomi T., Kirino T., Tamura A., Noguchi M., Saito I., and Takakura K. (1988) Indomethacin ameliorates ischemic neuronal damage in the gerbil hippocampal CA1 sector.Stroke 19, 1399–1403.

    PubMed  CAS  Google Scholar 

  • Sato K., Yamaguchi M., Mullan S., Evans J. P., and Ishii S. (1969) Brain edema. A study of biochemical and structural alteration.Arch. Neurol. 21, 413–424.

    PubMed  CAS  Google Scholar 

  • Shibata S., Hodge C. P., and Pappius H. M. (1974) Effect of experimental ischemia on cerebral water and electrolytes.J. Neurosurg. 41, 146–159.

    PubMed  CAS  Google Scholar 

  • Schmalzig G. and Kutschera P. (1982) Modulation of ATPase activities of human erythrocyte membranes by free fatty acids or phospholipase A2.J. Membr. Biol. 69, 65–76.

    Google Scholar 

  • Schuier E. J. and Hossman K.-A. (1980) Experimental brain infarcts in cats. II. Ischemic brain edema.Stroke 11, 593–601.

    PubMed  CAS  Google Scholar 

  • Schutz H., Silverstein P. R., Vapalahti M., Bruce D. A., Mela L., and Langfitt T. W. (1973) Brain mitochondrial function after ischemia and hypoxia. I. Ischemia induced by increased intracranial pressure.Arch. Neurol. 29, 408–416.

    PubMed  CAS  Google Scholar 

  • Schwartz J. P., Mrsulja B. B., Mrsulja B. J., Passonneau J. V., and Klatzo I. (1976) Alterations of cyclic nucleotide-related enzymes and ATPase during unilateral ischemia and recirculation in gerbil cerebral cortex.J. Neurochem. 27, 101–107.

    CAS  Google Scholar 

  • Shigeno T., Asano T., Watanabe E., Johshita H., and Takakura K. (1985) Does capillary Na, K-ATPase play a role in the development of ischemic brain edema?Brain Edema (Inaba Y., Klatzo I., and Spatz M., eds.), pp. 461–464, Springer-Verlag, Berlin.

    Google Scholar 

  • Shimizu T., Isumi T., Seyama Y., Tadokoro K., Radmark O., and Samuelsson B. (1986) Characterization of leukotriene A4 synthase from murine mast cells. Evidence for its identity to arachidonate 5-lipoxygenase.Proc. Natl. Acad. Sci. USA 83, 4175–4179.

    PubMed  CAS  Google Scholar 

  • Shimizu T., Watanabe T., Asano T., Seyama Y., and Takakura K. (1988) Activation of the arachidonate 5-lipoxygenase pathway in the canine basilar artery after the experimental subarachnoid hemorrhage.J. Neurochem. 51, 1126–1131.

    PubMed  CAS  Google Scholar 

  • Shrago E. (1978) The effect of long chain fatty acyl CoA esters on the adenine nucleotide translocase and myocardial metabolism.Life Sci. 22, 1–6.

    PubMed  CAS  Google Scholar 

  • Siegel B. A., Studer R. K., and Potchen E. J. (1973) Brain22Na uptake in experimental cerebral microembolism.J. Neurosurg. 38, 739–742.

    PubMed  CAS  Google Scholar 

  • Siesjo B. K. (1981) Cell damage in the brain: A speculative synthesis.J. Cereb. Blood Flow Metab. 1, 155–185.

    PubMed  CAS  Google Scholar 

  • Siesjo B. K. (1985) Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology.Prog. Brain Res. 63, 121–154.

    PubMed  CAS  Google Scholar 

  • Siesjo B. K., Bendek G., Koide T., Westerberg E., and Wieloch T. (1985) Influence of acidosis on lipid peroxidation in brain tissues in vitro.J. Cereb. Blood Flow Metab. 5, 253–258.

    PubMed  CAS  Google Scholar 

  • Simeone F. A., Frazer G., and Lawner P. (1979) Ischemic brain edema: comparative effects of barbiturates and hypothermia.Stroke 10, 9–12.

    Google Scholar 

  • Skou J. C. (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane.Physiol. Rev. 45, 596–617.

    PubMed  CAS  Google Scholar 

  • Sun A. Y. (1972) The effect of lipoxidation on synaptosomal Na, K-ATPase isolated from the cerebral cortex of squirrel monkey.Biochim. Biophys. Acta 266, 350–360.

    PubMed  CAS  Google Scholar 

  • Tamura A., Graham D. E., McCulloch J., and Teasdale G. M. (1981a) Focal cerebral ischaemia in the rat. I: Description of technique and early neuropathological consequences following middle cerebral artery occlusion.J. Cereb. Blood Flow Metab. 1, 53–60.

    PubMed  CAS  Google Scholar 

  • Tamura A., Graham D. I., McCulloch J., and Teasdale G. M. (1981b) Focal cerebral ischaemia in the rat II: Regional cerebral blood flow determined by (14C)-iodoantipyrine autography following middle cerebral artery occlusion.J. Cereb. Blood Flow Metab. 1, 61–69.

    PubMed  CAS  Google Scholar 

  • Tanaka R., Tanimura K., and Ueki K. (1977) Ultrastructural and biochemical studies on ouabain-induced oedematous brain.Acta Neuropath. 37, 95–100.

    PubMed  CAS  Google Scholar 

  • Usui M., Asano T., and Takakura K. (1987) Identification and quantitative analysis of hydroxyeicosatetraenoic acids in the rat brain exposed to regional ischemia.Stroke 18, 490–494.

    PubMed  CAS  Google Scholar 

  • Wakai S., Aritake K., Asano T., and Takakura K. (1982) Selective destruction of the outer leaflet of the capillary endothelial membrane after intracerebral injection of arachidonic acid.Acta Neuropathol. 58, 303–306.

    PubMed  CAS  Google Scholar 

  • Wei E. P., Kontos H. A., Dietrich W. D., Povlishock J. T., and Ellis E. F. (1981) Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats.Circ. Res. 48, 95–103.

    PubMed  CAS  Google Scholar 

  • Welsh F. A., Greenberg J. H., Jones S. C., Ginsberg M. D., and Reivich M. (1980) Correlation between glucose utilization and metabolite levels during focal ischemia in cat brain.Stroke 11, 79–84.

    PubMed  CAS  Google Scholar 

  • Westergaard E., Go G., Klatzo I., and Spatz M. (1976) Increased permeability of cerebral vessels to horseradish peroxidase induced by ischemia in mongolian gerbils.Acta Neuropath. 35, 307–325.

    PubMed  CAS  Google Scholar 

  • Wojtczak L. and Lehninger A. L. (1961) Formation and disappearance of an endogenous uncoupling factor during swelling and contraction of mitochondria.Biochim. Biophys. Acta 51, 442–456.

    PubMed  CAS  Google Scholar 

  • Wojtczak L. (1976) Effect of long-chain fatty acids and acyl-CoA on mitochondrial permeability, transport, and energy-coupling processes.J. Bioenerget. Biomembr. 8, 293–311.

    CAS  Google Scholar 

  • Wolfe L. S. (1982) Eicosanoids: Prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids.J. Neurochem. 38, 1–14.

    PubMed  CAS  Google Scholar 

  • Wolfe L. S. and Pappius H. M. (1984) Arachidonic acid metabolites in cerebral ischemia and brain injury,Cerebral Ischemia (Bes A., Braquet P., Paoletti R., and Siesjo B. K., eds.), pp. 223–231, Elsevier, Amsterdam.

    Google Scholar 

  • Wright E. M. (1972) Mechanisms of ion transport across the choroid plexus.J. Physiol. (London)226, 545–571.

    CAS  Google Scholar 

  • Yamamoto M., Shima T., Uozumi T., Sogabe T., Yamada K., and Kawasaki T. (1983) A possible role of lipid peroxidation in cellular damages caused by cerebral ischemia and the protective effect of α-tocopherol administration.Stroke 14, 977–982.

    PubMed  CAS  Google Scholar 

  • Yasuda H., Kishiro K., Izumi N., and Nakanishi M. (1981) Biphasic liberation of arachidonic and stearic acids during cerebral ischemia.J. Neurochem. 45, 168–172.

    Google Scholar 

  • Yoshida S., Inoh S., Asano T., Sano K., Kubota M., Shimaziki H., and Ueta N. (1980) Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain. Lipid peroxidation as possible cause of postischemic injury.J. Neurosurg. 53, 323–331.

    PubMed  CAS  Google Scholar 

  • Yoshida S., Busto R., Ginsberg M. D., Abe K., Martinez E., Watson B. D., and Scheinberg P. (1983) Compression-induced brain edema: Modification by prior depletion and supplementation of vitamin E.Neurology 33, 166–172.

    PubMed  CAS  Google Scholar 

  • Yoshida S., Ikeda M., Busto R., Santiso M., Martinez E., and Ginsberg M. D. (1986) Cerebral phosphoinositide, triacylglycerol and energy metabolism in reversible ischemia: origin and fate of free fatty acids.J. Neurochem. 47, 744–757.

    Article  PubMed  CAS  Google Scholar 

  • Young W., Rappaport H., Chalif D. J., and Flamm E. S. (1987) Regional brain sodium, potassium, and water changes in the rat middle cerebral artery occlusion model of ischemia.Stroke 18, 751–759.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asano, T., Koide, T., Gotoh, O. et al. The role of free radicals and eicosanoids in the pathogenetic mechanism underlying ischemic brain edema. Molecular and Chemical Neuropathology 10, 101–133 (1989). https://doi.org/10.1007/BF03159717

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159717

Index Entries

Navigation