Skip to main content
Log in

Identical superdeformed bands

  • Published:
Acta Physica Hungarica New Series Heavy Ion Physics

Abstract

The phenomenon of identical bands is studied by analyzing the distributions of fractional changes in the dynamical moments of inertia of pairs of bands in superdeformed (SD) nuclei. These distributions are found to exhibit a peak with a centroid at nearly zero. Their widths increase in going from the SD bands in the massA∼150, to the SD bands in the mass ∼190 and to the normally-deformed bands in the rare-earth region. These differences may be attributed to the weaker pairing correlations and the stabilizing role of intruder orbitals on the structures of SD bands. Precise level lifetimes have been measured for various pairs of identical SD bands in Gd and Dy isotopes. By comparing the derived quadrupole moments with calculations performed in the framework of the cranking Skyrme-Hartree-Fock model, it is shown that, independently of the intrinsic configuration and of the proton and neutron numbers, the charge moments calculated with respect to the doubly-magic SD core of152Dy can be expressed in terms of independent contributions from the individual hole and particle orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Baktash, B. Haas and W. Nazarewicz,Ann. Rev. Nucl. Part. Sci. 45 (1995) 485.

    Article  ADS  Google Scholar 

  2. T. Byrski et al.,Phys. Rev. Lett. 64 (1990) 1650.

    Article  ADS  Google Scholar 

  3. W. Nazarewicz et al.,Phys. Rev. Lett. 64 (1990) 1654.

    Article  ADS  Google Scholar 

  4. F.S. Stephens,Nucl. Phys. A520 (1990) 91c.

    Article  ADS  Google Scholar 

  5. F.S. Stephens et al.,Phys. Rev. Lett. 66 (1991) 1378.

    Article  ADS  Google Scholar 

  6. I. Ahmad et al.,Phys. Rev. C45 (1991) 1204.

    Google Scholar 

  7. R.F. Casten et al.,Phys. Rev. C45 (1992) R1413.

    Article  ADS  Google Scholar 

  8. C. Baktash et al.,Phys. Rev. Lett. 69 (1992) 1500.

    Article  ADS  Google Scholar 

  9. G. de France et al.,Phys. Rev. C53 (1996) 1070.

    Article  Google Scholar 

  10. C. Baktash et al.,Nucl. Phys. A557 (1993) 145c.

    Article  ADS  Google Scholar 

  11. References to experimental bands used in this study can be found in the review [1] C. Baktash, B. Haas and W. Nazarewicz,Ann. Rev. Nucl. Part. Sci. 45 (1995) 485.

    Google Scholar 

  12. W. Nazarewicz, R. Wyss and A. Johnson,Nucl. Phys. A503 (1989) 285.

    Article  Google Scholar 

  13. Y.R. Shimizu, E. Vigezzi and R.A. Broglia,Nucl. Phys. A509 (1990) 80.

    Article  Google Scholar 

  14. T. Bengtsson, S. Åberg and I. Ragnarsson,Phys. Lett. 208B (1988) 39.

    ADS  Google Scholar 

  15. I. Ragnarsson,Nucl. Phys. A557 (1993) 167.

    Article  Google Scholar 

  16. See Ref. [17] P. Fallon et al., inProc. Conf. on Physics from Large γ-Ray Arrays, Lawrence Berkeley Laboratory Report LBL-35687, Berkeley, 1994, Vol. II, pp. 89–93.

  17. P. Fallon et al., inProc. Conf. on Physics from Large γ-Ray Arrays, Lawrence Berkeley Laboratory Report LBL-35687, Berkeley, 1994, Vol. II, pp. 89–93.

  18. see Refs [19–21]. W. Satula et al.,Nucl. Phys. A529 (1991) 289. B. Gall et al.,Z. Phys. A348 (1994) 183.

    Google Scholar 

  19. M.A. Riley et al.,Nucl. Phys. A512 (1990) 178.

    Google Scholar 

  20. W. Satula et al.,Nucl. Phys. A529 (1991) 289.

    Article  Google Scholar 

  21. B. Gall et al.,Z. Phys. A348 (1994) 183.

    Article  ADS  Google Scholar 

  22. D. Ye et al.,Phys. Rev. C41 (1990) R13.

    Article  ADS  Google Scholar 

  23. M.A. Bentley et al.,Phys. Rev. Lett. 59 (1987) 2141.

    Article  ADS  Google Scholar 

  24. B. Cederwall et al.,Nucl. Instr. Meth. A354 (1995) 591.

    Article  ADS  Google Scholar 

  25. B. Haas et al.,Phys. Rev. Lett. 60 (1988) 503.

    Article  ADS  Google Scholar 

  26. P. Fallon et al.,Phys. Lett. B257 (1991) 269.

    Google Scholar 

  27. H. Savajols et al.,Phys. Rev. Lett. 76 (1996) 4480.

    Article  ADS  Google Scholar 

  28. C. Rigollet et al., PhD thesis (1996) and to be published.

  29. S. Flibotte et al.,Nucl. Phys. A584 (1995) 373.

    Article  Google Scholar 

  30. G. de Angelis et al., inProc. Conf. Phys. Large γ-Ray Arrays, Lawrence Berkeley Lab. Rep. LBL-35687, 1994.

  31. G. de France, inInternational Spring Seminar on Nuclear Physics, New Perspectives in Nuclear Structure, Ravello, Italy, 1995.

  32. F.A. Beck, inProc. Conf. Phys. Large γ-Ray Arrays, Lawrence Berkeley Lab. Rep. LBL-35687, 1994.

  33. L.C. Northcliffe and R.F. Schilling,Nucl. Data Tables 7 (1970) 256.

    Article  Google Scholar 

  34. S.H. Sie et al.,Nucl. Phys. A291 (1977) 443.

    Article  Google Scholar 

  35. J. Lindhard, M. Scharff and H.E. Schiott,Mat. Fys. Medd. Dan. Vid. Selk. 33, No. 14 (1963).

    Google Scholar 

  36. K.B. Winterbon,Atomic Energy of Canada Limited Report, AECL-3194 (1968).

  37. A.E. Blaugrund,Nucl. Phys. 88 (1966) 501.

    Article  Google Scholar 

  38. J.C. Bacelar et al.,Phys. Rev. C35 (1987) 1170.

    Article  ADS  Google Scholar 

  39. J. Gascon et al.,Nucl. Phys. A513 (1990) 344.

    Article  Google Scholar 

  40. J.F. Ziegler, J.P. Biersack and U. Littmark,The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.

    Google Scholar 

  41. B. Haas et al.,Nucl. Phys. A561 (1993) 251.

    Article  Google Scholar 

  42. W. Satula, J. Dobaczewski, J. Dudek and W. Nazarewicz,Phys. Rev. Lett. 77 (1996) 5168.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, B. Identical superdeformed bands. APH N.S., Heavy Ion Physics 6, 205–218 (1997). https://doi.org/10.1007/BF03158498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03158498

Keywords

Navigation