Skip to main content
Log in

Extended de Launay model study of lattice dynamics of alkali metals

  • Published:
Acta Physica Academiae Scientiarum Hungaricae

Abstract

The original model of de Launay has been extended to consider interionic interactions out to fourth neighbours. The present formalism has been applied to study lattice dynamics of four alkali metals viz sodium, potassium, lithium and rubidium. The phonon dispersion curves along the principal symmetry directions, frequency versus frequency distribution function as well as lattice heat capacities are calculated and compared to experimental results. An excellent agreement has been obtained between the theoretical and experimental results for all the four metals studied here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. de Launay, Solid State Physics, Edited by Seitz and Turnbull, Academic Press, New York, Vol. 2 (1965), p. 220.

    Google Scholar 

  2. A. B. Bhatia, Phys. Rev.,97, 363, 1955.

    Article  MATH  ADS  Google Scholar 

  3. T. Toya, J. Res. Inst. Catalysis, Hokkaido University,6, 161, 183, 1961.

    Google Scholar 

  4. L. J. Sham, Proc. Phys. Soc.,78, 895, 1961.

    Article  MATH  Google Scholar 

  5. S. H. Vosko, R. Taylor andG. H. Keech, Can. J. Phys.,43, 1187, 1963.

    ADS  Google Scholar 

  6. W. A. Harrison, Pseudopotentials in the Theory of Metals, Benjamin Inc., New York 1966.

    Google Scholar 

  7. P. K. Sharma andS. K. Joshi, J. Chem. Phys.,39, 2633, 1963.

    Article  ADS  Google Scholar 

  8. K. Krebs, Phys. Rev.,138, A143, 1965.

    Article  ADS  Google Scholar 

  9. L. Chéveau, Phys. Rev.,169, 496, 1968.

    Article  ADS  Google Scholar 

  10. M. M. Shukla andR. Cavalheiro, Proceedings of International Conference on Phonons, Rennes, July 25–29, Editor M. A. Numivoici, Flammarion Sciences, Paris (1971) p. 313.

    Google Scholar 

  11. M. M. Shukla andR. Cavalheiro, Il Nuovo Cimento,16B, 83, 1973.

    ADS  Google Scholar 

  12. R. Cavalheiro andM. M. Shukla, Jr. Phys. Soc. Japan,34, 1002, 1973.

    Article  ADS  Google Scholar 

  13. A. D. B. Woods, B. N. Brockhouse, R. H. March andA. T. Stewart, Phys. Rev., 1112, 1962.

  14. S. L. Quimby andS. Siegel, Phys. Rev.,54, 293, 1938.

    Article  ADS  Google Scholar 

  15. R. A. Cowley, A. D. B. Woods andG. Dolling, Phys. Rev.,150, 487, 1966.

    Article  ADS  Google Scholar 

  16. W. R. Marquardt andJ. Trivisonno, J. Phys. Chem. Solids,26, 273, 1965.

    Article  ADS  Google Scholar 

  17. H. G. Smith, G. Dolling andR. M. Nicklow, Proceedings of International Conference on Inelastic Neutron Scattering, International Atomic Energy Agency, Vienna (1962) Vol. I, 149.

    Google Scholar 

  18. H. C. Nash andC. S. Smith, J. Phys. Chem. Solids,9, 113, 1959.

    Article  ADS  Google Scholar 

  19. J. R. D. Copley, B. N. Brockhouse andS. H. Chem, Proc. International Conference on Inelastic Neutron Scattering, International Atomic Energy Agency, Vienna (1968) Vol. I, p. 209.

  20. C. A. Roberts andR. Meistener, J. Phys. Chem. Solids,27, 1401, 1967.

    Article  Google Scholar 

  21. H. B. Huntington, Solid State Physics, Edited by Seitz and Turnbull, Academic Press, New York (1958) Vol. 7, 288.

    Google Scholar 

  22. D. L. Martin, Proc. Roy. Soc.,A254, 433, 1960.

    Article  ADS  Google Scholar 

  23. F. Simon andW. Z. Zeidler, Z. Phys. Chem.,123, 383, 1926.

    Google Scholar 

  24. J. D. Filby andD. L. Martin, Proc. Roy. Soc.,A276, 187, 1963.

    Article  ADS  Google Scholar 

  25. L. M. Roberts, Proc. Phys. Soc.B70, 744, 1957.

    Article  ADS  Google Scholar 

  26. D. H. Parkinson andJ. E. Quarrington, Proc. Phys. Soc.,A68, 762, 1955.

    Article  ADS  Google Scholar 

  27. D. L. Martin, Phys. Rev.,124, 438, 1961.

    Article  ADS  Google Scholar 

  28. C. A. Krier, R. S. Craig andW. E. Wallace, J. Phys. Chem.,61, 522, 1957.

    Article  Google Scholar 

  29. W. H. Lien andN. E. Phillips, Phys. Rev.,133A, 1370, 1964.

    Article  ADS  Google Scholar 

  30. J. D. Filby andD. L. Martin, Proc. Roy. Soc.,A284, 83, 1965.

    Article  ADS  Google Scholar 

  31. F. Simon andR. C. Swain, Z. Physik. Chem.,B28, 189, 1935.

    Google Scholar 

  32. D. L. Martin, Proc. Roy. Soc.,A254, 444, 1960.

    Article  ADS  Google Scholar 

  33. D. L. Martin, Proc. Roy. Soc.,A263, 378, 1961.

    Article  ADS  Google Scholar 

  34. F. D. Manchester, Canad. J. Phys.,37, 525, 1959.

    ADS  Google Scholar 

  35. B. Dayal andB. Sharan, Proc. Roy. Soc.,A259, 361, 1960.

    Article  ADS  Google Scholar 

  36. B. Dayal andB. Sharan, Proc. Roy. Soc.,A262, 136, 1961.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalheiro, R., Shukla, M.M. Extended de Launay model study of lattice dynamics of alkali metals. Acta Physica 37, 187–205 (1974). https://doi.org/10.1007/BF03158197

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03158197

Keywords

Navigation