Skip to main content
Log in

Theoretical implications of recent electron—Positron colliding beam experiments

Теоретические истолкования новых экспериментов по столкновению электронного и позитронного пучков

  • Published:
Acta Physica Academiae Scientiarum Hungaricae

Abstract

The theoretical consequences of recent electron—positron colliding beam experiments are summarized from the point of view of tests of pure quantum electrodynamics, the study of the vector mesons ϱ, щ, ф and the frontier region beyond the ϱ, щ and ф.

Резюме

Подытожены теоретические следствия новых экспериментов по столкновению электронного и позитронного пучков с точки зрения прверки чистой квантовой-электродинамики, а также изучения векторных мезонов ϱ, ω, ф, и граничной области выше ϱ, ω и ϕ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Actually I am in a more fortunate position thanRichard Wilson, who, as a rapporteu at the Kiev Conference, had to cover this interesting subject in fifteen minutes.

  2. Throughout the paper √s stands for the total center-of-mass energy of the e+e system. Quite often in the literature,E (the energy per beam) is used. Notice √s = 2E.

  3. Throughout the paper the various groups working at Frascati (Adone) are referred to in the following manner: (i) The “π-μ Group” (or the Conversi-Grilli Group):G. Barbiellini et al.;B. Borgia et al. (ii) The “Boson Group” (or the Silvestrini Group):B. Bartoli et al. (iii) The “Bologna—CERN Group” (or the Zichichi Group):V. Alles-Borelli et al. (iv) The “γγ Group” (or the Salvini Group),R. Baldini-Celio et al. The Frascati data quoted in our paper are taken from the papers submitted to the Kiev Conference by these four groups.

  4. V. E. Balakin et al., (contributed paper to the Kiev Conference).

  5. N. M. Kroll, Nuovo Cimento,45A, 65, 1969.

    ADS  Google Scholar 

  6. For review see, e.g.,S. J. Brodsky andS. D. Drell, Ann. Rev. Nucl. Sci., (to be published).

  7. T. D. Lee andG. C. Wick, Nucl. Phys.,B9, 209, 1969.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. V. L. Auslander et al., Phys. Letters,25B, 433, 1967.

    ADS  Google Scholar 

  9. J. E. Augustin et al., Phys. Rev. Letters,20, 129, 1968; Phys. Letters,28B, 508, 1969.

    Article  ADS  Google Scholar 

  10. W. R. Frazer andJ. R. Fulco, Phys. Rev. Letters,2, 365, 1959; Phys. Rev.,117, 1609, 1960.

    Article  ADS  Google Scholar 

  11. G. F. Chew andS. Mandelstam, Phys. Rev.,119, 467, 1960;L. S. Brown andR. L. Goble, Phys. Rev. Letters,20, 346, 1968.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. G. J. Gounaris andJ. J. Sakurai, Phys. Rev. Letters,21, 244, 1968.

    Article  ADS  Google Scholar 

  13. The figures are taken fromJ. Haissinski in the “Proceedings of the Conference on ππ andKπ Interactions” (May 1969, Argonne National Laboratory) p. 373.

  14. Actually a more complete expression, Eq. (11) of [12] has been used in the two-parameter fit.

  15. S. Okubo, Phys. Letters,5, 165, 1963.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. S. Weinberg, Phys. Rev. Letters,18, 507, 1967.

    Article  ADS  Google Scholar 

  17. T. Das, V. S. Mathur andS. Okubo, Phys. Rev. Letters,19, 470, 1967;J. J. Sakurai, Phys. Rev. Letters,19, 803, 1967.

    Article  ADS  Google Scholar 

  18. R. J. Oakes andJ. J. Sakurai, Phys. Rev. Letters,19, 1266, 1967.

    Article  ADS  Google Scholar 

  19. N. M. Kroll, T. D. Lee andB. Zumino, Phys. Rev.,157, 1376, 1967.

    Article  ADS  Google Scholar 

  20. S. Coleman andH. J. Schnitzer, Phys. Rev.,134B, 863, 1964.

    Article  ADS  MathSciNet  Google Scholar 

  21. In the literature, in addition to θ, the angles θ Y and θ B (= θ N ) also appear frequently. In our scheme (the “current mixing” model) the three angles are related by tan θ = (m ω/m ρ) tan θ Y = (m ρ/m ω) tan θ B . See especiallyKroll, Lee andZumino [19].

  22. J. E. Augustin et al., Phys. Letters,28B, 513, 517, 1969;J. C. Bizot et al., Phys. Letters,32B, 416, 1970

    ADS  Google Scholar 

  23. For other theoretical schemes, seeH. Sugawara, Phys. Rev. Letters,21, 772, 1968;E. Cremmer, Nucl. Phys.,B15, 131, 1970;I. Kimel, to be published. See alsoDas, Mathur andOkubo [17].

    Article  ADS  Google Scholar 

  24. The concept of “current mixing” can be formulated without reference to broken SU(3). This means that the two determinations ofO could agree even if the sum rule (23) were violated. If we use “mass mixing”, the θ appearing in Eq. (30) must be compared to θ Y defined by tan2θ Y = (m ρ/m ω) [Λ(ω → e+e/Λ(ρ → e+e)). Empirically θ Y = (41 ± 3)°. It therefore appears that the current-mixing is in better agreement with the Orsay data. See alsoJ. J. Sakurai in the “Proceedings of the International Symposium on Electron and Photon Interactions at High Energies” (Liverpool, September 1969) p. 91.

  25. J. E. Augustin et al., Nuovo Cimento Letters,2, 214, 1969.

    Article  Google Scholar 

  26. M. Gourdin, L. Stodolsky andF. M. Renard, Phys. Letters,30B, 347, 1969;R. G. Sachs andJ. F. Willemsem, Phys. Rev.,D2, 133, 1970.

    ADS  Google Scholar 

  27. V. E. Balakin et al. (contributed paper to the Kiev Conference).

  28. J. D. Bjorken, Phys. Rev.,148, 1467, 1967;V. N. Gribov, B. L. Ioffee andI. Ya. Pomeranchuk, Phys. Letters,24B, 554, 1967. For more recent “point-like” models, see e.g.S. D. Drell, D. J. Levy andT.-M. Yan, Phys. Rev.,187, 2159, 1969;N. Cabibbo, G. Parisi andM. Testa, Lett. al Nuovo Cimento,4, 35, 1970.

    Article  ADS  Google Scholar 

  29. J. Dooher, Phys. Rev. Letters,19, 600, 1967;J. J. Sakurai in “Quanta, Essays in Theoretical Physics Dedicated to Gregor Wentzel” (edited byP. G. O. Freund, C. J. Goebel andY. Nambu, University of Chicago Press, Chicago 1970), p. 247.

    Article  ADS  Google Scholar 

  30. G. Kramer, J. L. Uretsky andT. F. Walsh, Phys. Rev.D3, 719, 1971.

    Article  ADS  Google Scholar 

  31. V. E. Balakin, V. M. Budnev andI. F. Ginzburg, JETP Letters,11, 388, 1970 [translated from ZhETF Pis. Red.,11, 559, 1970] and a more detailed paper contributed to the Kiev Conference.

    ADS  Google Scholar 

  32. S. J. Brodsky, T. Kinoshita andH. Terazawa, Phys. Rev. Letters,25, 972, 1970.

    Article  ADS  Google Scholar 

  33. “Photon-photon collision” processes have previously been considered by many authors:F. E. Low, Phys. Rev.,120, 582, 1960;F. Calogero andD. Zeemach, Phys. Rev.,120, 1860, 1969;N. A. Romero, A. Jaccarini andP. Kessler, C. R. Acad. Sci., Ser.B296, 153, 1133, 1969.

    Article  ADS  Google Scholar 

  34. V. G. Serbo, JETP Letters12, 39, 1970 [translated from ZhETF Pis. Red.,12, 50, 1970].

    ADS  Google Scholar 

  35. I have been informed bySerbo that Eq. (2) of [34] should be replaced by Eq. (36) of the present paper.

  36. The reader may wonder why we do not consider e+e→e+e+e+e (the process obtained by replacing the hadrons in Fig. 5(b) by an electron-positron pair) which, of course, has an even bigger cross section ∼(α4m 2 e ) [ln(s/m 2 e )]3. It can be seen, however, that in this case the two charged trackes emerging from the middle of the photon line must be essentially coplanar; this is because the electron pair is created by almost real photons moving in the beam direction. When the Frascati groups give their multibody cross section, they specifically exclude events with non-coplanarity angles smaller than 20°. On the other hand, e+e→e+e+e+eγ could be confused with e+e ar π+π neutrals.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakurai, J.J. Theoretical implications of recent electron—Positron colliding beam experiments. Acta Physica 31, 5–19 (1972). https://doi.org/10.1007/BF03156825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03156825

Keywords

Navigation