Acta Physica Hungarica

, Volume 75, Issue 1–4, pp 61–69 | Cite as

Intense sources for positron research

  • W. Triftshäuser
Condensed Matter


Positron annihilation is a well-established method in solid state physics and material science. The positron being a very sensitive probe, can give very precise information on the momentum distribution of electrons in metals and alloys as well as on lattice defects in crystals. Starting with the energy distribution of positrons from a radioactive decay, the current development is directed more to monoenergetic positrons of variable energy and of high intensity. The impact of intense positron beams is straightforward: a decrease of the counting time. There are various possibilities and approaches to realize intense positron beams. The aim is to obtain a beam intensity in the order of ∼ 1010 positrons/s. Parallel to the instalment of intense positron beams, the development of positron microscopes is pursued.


Pair Production Positron Annihilation Positron Lifetime Material Seienee Positron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Triftshäuser, Microscopic Methods in Metals, Topics in Current Physics,40, Springer, Berlin-Heidelberg-New York, 1986, pp. 249–295.Google Scholar
  2. 2.
    P. J. Schultz and K. G. Lynn, Rev. Mod. Phys.,60, 701, 1988.CrossRefADSGoogle Scholar
  3. 3.
    R. H. Howell, R. A. Alvarez and M. Stanek, Positron Annihilation, Arlington, 3–7 April 1982, North-Holland Publishing Company, Amsterdam, 1982, pp. 860–862.Google Scholar
  4. 4.
    D. Segers, J. Paridaens, M. Dorikens and L. Dorikens-Vanpraet, Nucl. Instr. Meth. A, 1993.Google Scholar
  5. 5.
    A. Van Veen, H. Schut, P. E. Mijnarends, L. Seijbel and P. Kruit, Slow Positron Beam Techniques for Solids and Surfaces, Conference Proceedings 303, American Institute of Physics, New York, 1994, pp. 354–364.Google Scholar
  6. 6.
    W. Triftshäuser, G. Kögel, K. Schreckenbach and B. Krusche, Helv. Phys. Acta,63, 378, 1990.Google Scholar
  7. 7.
    D. Taqqu, Helv. Phys. Acta,63, 442, 1990.Google Scholar
  8. 8.
    U. Zimmermann, Helv. Phys. Acta,63, 435, 1990.Google Scholar
  9. 9.
    W. B. Waeber, Helv. Phys. Acta,63, 448, 1990.Google Scholar
  10. 10.
    W. B. Waeber, M. Shi, D. Gerola, U. Zimmermann and D. Taqqu, PSI Annual Progress Report 1993, Annex IIIA, pp. 19–22, Würenlingen 1994.Google Scholar
  11. 11.
    G. Kögel, D. Schödlbauer, W. Triftshäuser and J. Winter, Phys. Rev. Lett.,60, 1550, 1988.CrossRefGoogle Scholar
  12. 12.
    D. Schödlbauer, P. Sperr, G. Kögel and W. Triftshäuser, Nucl. Instr. Meth. in Phys. Res.,B34, 258, 1988.CrossRefADSGoogle Scholar
  13. 13.
    R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki and T. Tomimasu, Japan J. Appl. Phys.,303B, 532, 1991.CrossRefGoogle Scholar
  14. 14.
    P. Willutzki, J. Störmer, G. Kögel, P. Sperr, D. T. Britton, R. Steindl and W. Triftshäuser, Meas. Sci. Technol.,5, 1, 1994.CrossRefGoogle Scholar
  15. 15.
    A. A. Manuel and M. Peter, Helv. Phys. Acta,63, 397, 1990.Google Scholar
  16. 16.
    S. S. Rajput, P. Pradsad, R. M. Singru, W. Triftshäuser, A. Eckert, G. Kögel, S. Kaprzyk and A. Bansil, J. Phys.: Condens. Matter,5, 6419, 1993.CrossRefADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • W. Triftshäuser
    • 1
  1. 1.Institut für Nukleare FestkörperphysikUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations