Skip to main content
Log in

Variational approach to hydrodynamics: Application to the sonoluminescence gas bubble

  • Published:
Acta Physica Hungarica New Series Heavy Ion Physics

Abstract

We develop a variational approximation allowing to study under realistic physical conditions the interior dynamics of cavitating gas bubbles in liquids. We discuss in some detail the intricacy of the gas bubble dynamics related to the small size of the system. We also show how to formulate the problem in the framework of the energy equation for non-adiabatic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.F. Gaitan, L.A. Crum, C.C. Church and R.A. Roy, Sonoluminescence and Bubble Dynamics for a Single, Stable Cavitation Bubble,J. Acoust. Soc. Am. 91 (1992) 3166; D.F. Gaitan and L.A. Crum, Sonoluminescence from Single Bubbles,J. Acoust. Soc. Am. Suppl. 1 87 (1990) S141.

    Article  ADS  Google Scholar 

  2. B.P. Barber, R. Hiller, R. Löfstedt, S.J. Putterman and K.R. Weninger, Defining the Unknowns of Sonoluminescence,Phys. Rep. 281 (1997) 65.

    Article  ADS  Google Scholar 

  3. B.P. Barber and S.J. Putterman, Observation of Synchronous Picosecond Sonoluminescence,Nature 352 (1991) 318; B.P. Barber and S.J. Putterman, Spectrum of Synchronous Picosecond Sonoluminescence,Phys. Rev. Lett. 69 (1992) 1182; B.P. Barber, Ph.D. Thesis,Synchronous Picosecond Sonoluminescence, Department of Physics, UCLA, Technical Report BB92 (June 1992), unpublished.

    Article  ADS  Google Scholar 

  4. E.A. Neppiras, Acoustic CavitationPhys. Rep. 61 (1980) 159 and references therein.

    Article  ADS  MathSciNet  Google Scholar 

  5. I. Scott, H.-Th. Elze, T. Kodama and J. Rafelski, “Time Evolution and Energy Content of Cavitating Gas Bubbles”, submitted for publication.

  6. L. Frommhold and A.A. Atchley, Is Sonoluminescence Collision-Induced Emission?Phys. Rev. Lett. 73 (1994) 2883.

    Article  ADS  Google Scholar 

  7. C.C. Wu and P.H. Roberts, Shock-Wave Propagation in a Sonoluminescing Gas Bubble,Phys. Rev. Lett. 70 (1993) 3424.

    Article  ADS  Google Scholar 

  8. W. Moss, D.B. Clarke, J.W. White and D.A. Young, Hydrodynamic Simulations of Bubble Collapse and Picosecond Sonoluminescence,Phys. Fluids 6 (1994) 2979; Sonoluminescence and the Prospects for Table-Top Micro-Thermonuclear Fusion,Phys. Lett. A211 (1996) 69.

    Article  ADS  Google Scholar 

  9. M.-C. Chu, The Homologous Contraction of a Sonoluminescing Bubble,Phys. Rev. Lett. 76 (1996) 4632.

    Article  ADS  Google Scholar 

  10. M.-C. Chu and D. Leung, Effects of Thermal Conduction in Sonoluminescence,J. Phys.: Condens. Matter 9 (1997) 3387.

    Article  ADS  Google Scholar 

  11. T. Kodama, R. Donangelo and M. W. Guidry, IF-preprint (1996), to be published elsewhere.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodama, T., Elze, H.T., Rafelski, J. et al. Variational approach to hydrodynamics: Application to the sonoluminescence gas bubble. APH N.S., Heavy Ion Physics 5, 343–356 (1997). https://doi.org/10.1007/BF03156110

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03156110

Keywords

Navigation