Acta Physica Hungarica

, Volume 62, Issue 2–4, pp 287–306 | Cite as

A symbolic algorithm for finding exactly soluble statistical mechanical models

  • P. Ruján
General Physics


In general it is a very difficult task to find statistical mechanical models which satisfy the Yang-Baxter equations and thus are completely integrable. We propose a new approach leading to a (overdetermined) set oflinear equations. The formalism is applied to the Ising and the Ashkin-Teller models, which are both self-duals in two dimensions. Preliminary results for a symbolic algebra manipulation program is given, which would derive the relevant set of equations for an arbitrary internal spin symmetry group.


Ising Model Transfer Matrix Matching Condition Statistical Mechanical Model Symbolic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For an example see G. Györgyi and P. Ruján, J. Phys., C17, 4207, 1984 and references therein.Google Scholar
  2. 2.
    For example the exact solution of the hard hexagon model (R. J. Baxter, J. Phys., A13, L61, 1980, and J. Stat. Phys.,26, 427, 1981) confirmed earlier conjectures regarding the critical exponents of the 3-state Potts model by M. P. M. den Nijs, J. Phys., A12, 1857, 1979.Google Scholar
  3. 3.
    R. J. Baxter, Ann. Phys. (N. Y.),76, 1, 1973; ibid.76, 25, 1973, ibid. Ann. Phys. (N. Y.),76, 48, 1973.CrossRefADSGoogle Scholar
  4. 4.
    G. E. Andrews, R. J. Baxter and P. J. Forrester, J. Stat. Phys.,35, 193, 1984.zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    P. Ruján, in Lecture Notes in Physics,226, p. 286, ed. N. Sanchez, Springer, New York, 1985.Google Scholar
  6. 6.
    R. J. Baxter, Exactly Soved Models in Statistical Mechanics, Academic, London, 1982; P. W. Kasteleyn, in Fundamental Problems in Statistical Mechanics, Vol. 3, p. 103, ed. E. D. G. Cohen, North-Holland, Amsterdam, 1975.Google Scholar
  7. 7.
    L. D. Faddeev, Sov. Sci. Rev. Section C (Math. Phys.), Vol.1, ed. P. Novikov, 1981; L. A. Takhtadzhand and L. D. Faddeev, Russian Math. Surveys,34, 11, 1979.Google Scholar
  8. 8.
    H. B. Thacker, Rev. Mod. Phys.,53, 253, 1981.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    S. K. Pokrovsky and Yu. A. Bashilov, Comm. Math. Phys.,84, 103, 1982.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    L. Mittag and M. J. Stephen, J. Math. Phys.,12, 441, 1971.CrossRefADSGoogle Scholar
  11. 11.
    S. Elitzur, R. B. Pearson and J. Shigemitsu, Phys. Rev. D19, 3698, 1979.ADSGoogle Scholar
  12. 12.
    J. L. Cardy, J. Phys., A13, 1507, 1980; P. Ruján, G. O. Williams, H. L. Frisch and G. Forgács, Phys. Rev., B23, 1362, 1981.ADSMathSciNetGoogle Scholar
  13. 13.
    L. Onsager, Phys. Rev.,65, 117, 1944.zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    R. J. Baxter, J. Phys. C6, L445, 1973.ADSGoogle Scholar
  15. 15.
    R. J. Baxter, Proc. Roy. Soc. London, A383, 43, 1982.CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    H. N. V. Temperley and E. H. Lieb, Proc. Roy. Soc. London, A322, 251, 1971; R. J. Baxter, S. B. Kelland and F. Y. Wu, J. Phys. A9, 397, 1976.zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    F. Wegner, J. Phys., C5, L131, 1972.ADSGoogle Scholar
  18. 18.
    J. M. Maillard, P. Ruján and T. T. Truong, J. Phys., A18, 3399, 1985.ADSMathSciNetGoogle Scholar
  19. 19.
    V. A. Fateev and A. B. Zamolodchikov, Phys. Lett., A92, 37, 1982.CrossRefMathSciNetGoogle Scholar
  20. 20.
    A. A. Belavin, Nucl. Phys., B180(FS2), 189, 1981.CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    R. J. Baxter, Comm. Math. Phys.,88, 185, 1983.CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M. Lüscher, Nucl. Phys., B117, 475, 1976.CrossRefADSGoogle Scholar
  23. 23.
    E. Fradkin and L. Susskind, Phys. Rev., D17, 2637, 1978.ADSMathSciNetGoogle Scholar
  24. 24.
    M. J. Stephen and L. Mittag, J. Math. Phys.,13, 1944, 1972; R. Savit, Rev. Mod. Phys.,52, 453, 1980.CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    L. Doland and M. Grady, Phys. Rev., D25, 1587, 1982.CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    G. V. Gehlen and V. Rittenberg, to be published.Google Scholar
  27. 27.
    M. Suzuki, Progr. Theor. Phys.,46, 1377, 1971.ADSGoogle Scholar
  28. 28.
    P. Ruján, J. Stat. Phys.,29, 231, 1982; J. Kurmann, H. Thomas and G. Müller, Physica,112A, 235, 1982.CrossRefADSGoogle Scholar
  29. 29.
    see Ref. [24a] ; R. Savit, Rev. Mod. Phys.,52, 453, 1980.CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    J. Ashkin and E. Teller, Phys. Rev.,64, 178, 1943.CrossRefADSGoogle Scholar
  31. 31.
    C. Fan, Phys. Lett., A39, 136, 1972.CrossRefGoogle Scholar
  32. 32.
    “Reduce User’s Manual” by A. C. Hearn, Version 3.1, Rand Publications, 1984 and Seven Reduce Interactive Lessons, by D. R. Stoutmayer.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • P. Ruján
    • 1
  1. 1.Institute for Solid State Research of the Nuclear Research Establishement JülichJülichFRG

Personalised recommendations