Skip to main content
Log in

Dependence of the interaction potential and fusion cross-section on temperature

  • Nuclear Physics
  • Published:
Acta Physica Hungarica

Abstract

The theory of nuclear fusion of two heavy ions is considered. This fusion process is one of the most dissipative processes since the two ions combine together forming a single excited systems. The fusion process occurs when the system is trapped into a pocket of the potential energy surfaces. The interaction potential is calculated making use of the Thomas-Fermi model. The calculated interaction potential helps in reproducing the fusion barrier by introducing the energy density formalism. Neglecting the temperature, previous calculations show that the fusion of two heavy ions cannot occur ifZ 1 Z 2≥2500. In the present work, the effects of including the temperature in the interaction potential and on the fusion cross-section are investigated for several two heavy ions using a modified Thomas-Fermi model. In the present calculations, taking the temperature into account, the fusion process of two heavy nuclei is found to occur for all values ofZ 1 Z 2 to 3000. This result is a generalized modifled result for the previously obtained condition. Simple static calculations of the fusion cross-sections are performed using hot potentials. The present calculations show that the barrier of the fusion cross-section is not sensitive at low bombarding energies; while at higher bombarding energies, the inclusion of the temperature increases the fusion cross-section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Nix and A. J. Sierk, Phys. Rev.,C15, 2072, 1977.

    ADS  Google Scholar 

  2. M. Barranco, M. Pi, X. Vinas, G. Larana, S. Leray, C. Ngô and E. Tomasi, Nucl. Phys.,A428, 239, 1984.

    Article  Google Scholar 

  3. M. Lefort and C. Ngô, Ann. de Phys.,3, 5, 1978.

    Google Scholar 

  4. C. Gregoire, C. Ngô and B. Remaud, Phys. Lett.,99B, 17, 1981.

    ADS  Google Scholar 

  5. C. Gregoire, C. Ngô and B. remaud, Nucl. Phys.,A383, 392, 1982.

    Article  Google Scholar 

  6. W. Nörenberg and H. A. Weidenmüller, Lecture Notes in Physics,51, 1976.

  7. W. Schröder and J. Huizenga, Ann. Rev. Nucl. Sci.,27, 465, 1977.

    Article  ADS  Google Scholar 

  8. C. Ngô, B. Tamain, J. Galin, M. Beiner and R. J. Lombard, Nucl. Phys.,A240, 353, 1975.

    Article  Google Scholar 

  9. C. Ngô, B. Tamain, M. Beiner, B. J. Lombard, D. Mass and H. M. Deubler, Nucl. Phys.,A252, 237, 1975.

    Article  Google Scholar 

  10. K. A. Brueckner, J. R. Buchler, S. Jorna and R. J. Lombard, Phys. Rev.,171, 1188, 1968.

    Article  ADS  Google Scholar 

  11. K. A. Brueckner, J. R. Buchler, R. C. Clark and R. J. Lombard, Phys. Rev.,181, 1543, 1969.

    Article  ADS  Google Scholar 

  12. R. J. Lombard, Ann. Phys. (N. Y.),77, 380, 1973.

    Article  ADS  Google Scholar 

  13. M. Beiner and R. J. Lombard, Ann. Phys. (N. Y.),86, 262, 1974.

    Article  ADS  Google Scholar 

  14. E. Tomasi, X. S. Chen, S. Leray, C. Ngô, M. Barranco, X. Vinas and H. Ngô, Nucl. Phys.,A389, 69, 1982.

    Article  Google Scholar 

  15. C. Ngô, C. Gregoire, B. Rem and E. Tomasi, Nucl. Phys.,A400, 259, 1983.

    Article  Google Scholar 

  16. C. Gregoire, R. Lucas, C. Ngô, B. Schürman and H. Ngô, Nucl. Phys.,A361, 443, 1981.

    Article  Google Scholar 

  17. J. R. Nix and A. J. Sierk, Phys. Rev.,C15, 2072, 1977.

    Article  ADS  Google Scholar 

  18. W. J. Swiatecki, Phys. Scripta,24, 113, 1981.

    Article  ADS  Google Scholar 

  19. W. J. Swiatecki, Nucl. Phys.,A376, 275, 1982.

    Article  Google Scholar 

  20. J. Blocki, Y. Bonek, J. R. Nix, J. Randrup, M. Robel, A. J. Sierk and W. J. Swiatecki, Ann. Phys. (N. Y.),113, 330, 1978.

    Article  ADS  Google Scholar 

  21. S. Bjønholm, Nucl. Phys.,A387, 51c, 1982.

    Article  ADS  Google Scholar 

  22. D. H. E. Gross and L. Stapathy, Phys. Lett.,110B, 31, 1982.

    ADS  Google Scholar 

  23. P. Fröbrich, Phys. Lett.,122B, 338, 1983.

    ADS  Google Scholar 

  24. P. Fröbrich, Phys. Reports,116, 337, 1984.

    Article  ADS  Google Scholar 

  25. T. Wuomijarvi, R. Lucas, C. Ngo, E. Tomasi, D. Dalil and J. Matusjek, Nuovo Cimento,82A, 51, 1984.

    ADS  Google Scholar 

  26. G. Royer and B. Remaud, Nucl. Phys.,A444, 477, 1985.

    Article  Google Scholar 

  27. J. Fleckner, G. Sauer and U. Mosel, Phys. lett.,65B, 316, 1976.

    ADS  Google Scholar 

  28. W. Reisdorf, F. P. Hessberger, K. D. Hildenbrand, S. Hofmann, G. Munjenberg, K. H. Schmidt, W. F. W. Schmeider, K. Summerer, G. Wirth, J. V. Kratd, K. Schlitt and C. C. Sahm, Nucl. Phys.,A444, 154, 1985.

    Article  Google Scholar 

  29. M. Barranco and J. R. Buchler, Phys. Rev.,C24, 1191, 1981.

    Article  ADS  Google Scholar 

  30. M. Barranco and J. Treiner, Nucl. Phys.,A351, 269, 1981.

    Article  Google Scholar 

  31. H. Ngô and C. Ngô, Nucl. Phys.,A348, 140, 1980.

    Article  Google Scholar 

  32. D. Glass and U. Mosel, Phys. Rev.,C10, 2620, 1974.

    Article  ADS  Google Scholar 

  33. D. Glass and U. Mosel, Nucl. Phys.,A337, 429, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osman, A., Abdel-Aziz, S.S. Dependence of the interaction potential and fusion cross-section on temperature. Acta Physica Hungarica 67, 367–379 (1990). https://doi.org/10.1007/BF03155818

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03155818

Keywords

Navigation