Thermal strangeness and charm in QGP

  • Johann Rafelski
  • Jean Letessier
  • Ahmed Tounsi
Dynamics of Strange Particle Production


Using QCD methods we re-evaluate strangeness and charm production in a thermal QGP fireball. QCD renormalization group is employed to evaluate running of the parameters αs(μ) andm s(μ). We resum even-αs Feynman diagrams involving two particles in initial and final states. We obtain thermal relaxation times in a simple dynamical description of the fireball and we use these results to study two generic strangeness observables as function of collision energy: specific (per baryon) strangeness yield\({{\left\langle {\bar s} \right\rangle } \mathord{\left/ {\vphantom {{\left\langle {\bar s} \right\rangle } B}} \right. \kern-\nulldelimiterspace} B}\), and phase space occupancy γs. From these two quantities, knowing the hadronization process in rough detail, we obtain the final state strange particle abundances.


Strange Quark Thermal Relaxation Time Strange Particle Charm Production Strangeness Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Biró and J. Zimányi,Phys. Lett. B113 (1982) 6;Nucl. Phys. A395 (1983) 525; J. Rafelski and B. Müller,Phys. Rev. Lett. 48 (1982) 1066;56 (1986) 2334E.Google Scholar
  2. 2.
    P. Lévai, B. Müller and X.-N. Wang,Phys. Rev. C51 (1995) 3326.CrossRefGoogle Scholar
  3. 3.
    J. Letessier, J. Rafelski and A. Tounsi, Impact of QCD and QGP Properties on Strangeness Production, submitted toPhys. Lett. B.Google Scholar
  4. 4.
    J. Rafelski, J. Letessier and A. Tounsi,Acta Phys. Pol. B27 (1996) 1035.Google Scholar
  5. 5.
    T.S. Biró, P. Lévai and B. Müller,Phys. Rev. D42 (1990) 3078.ADSGoogle Scholar
  6. 6.
    T. Altherr and D. Seibert,Phys. Lett. B313 (1993) 149 and Phys. Rev.C49 (1994) 1684.Google Scholar
  7. 7.
    N. Bilić, J. Cleymans, I. Dadić and D. Hislop,Phys. Rev. C52 (1995) 401.CrossRefADSGoogle Scholar
  8. 8.
    J. Sollfrank and U. Heinz, The Role of Strangeness in Ultrarelativistic Nuclear Collisions, inQuark Gluon Plasma 2, p. 555, ed.: R.C. Hwa, World Scientific, Singapore, 1995.Google Scholar
  9. 9.
    M. Gaździcki and D. Röhrich, Strangeness in Nuclear Collisions, preprint IKFHENPG/8-95,Z. Physik C (1996).Google Scholar
  10. 10.
    J. Rafelski,Phys. Rep. 88 (1982) 331; J. Rafelski and M. Danos,Phys. Lett. B192 (1987) 432.Google Scholar
  11. 11.
    J. Rafelski,Phys. Lett. B262 (1991) 333;Nucl. Phys. A544 (1992) 279c.Google Scholar
  12. 12.
    J. Letessier, J. Rafelski and A. Tounsi,Phys. Lett. B333 (1994) 484.Google Scholar
  13. 13.
    B. Combridge,Nucl. Phys. B151 (1979) 429; T. Matsui, B. Svetitsky and L.D. McLerran,Phys. Rev. D34 (1986) 783.CrossRefADSGoogle Scholar
  14. 14.
    I. Hinchliffe, Quantum Chromodynamics, in: L. Montanet et al.,Phys. Rev. D50 (1994) 1173 (update August 1995:; see also, e.g., T. Muta,Foundations of Quantum Chromodynamics, World Scientific, 1987.Google Scholar
  15. 15.
    M.A. Samuel, J. Ellis and M. Karliner,Phys. Rev. Lett. 74 (1995) 4380.CrossRefADSGoogle Scholar
  16. 16.
    P. Langacker, Precision Experiments, Grand Unification and Compositeness, preprint NSF-ITP-140, UPR-0683T, October 1995.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • Johann Rafelski
    • 1
  • Jean Letessier
    • 2
  • Ahmed Tounsi
    • 2
  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA
  2. 2.LPTHEUniversité Paris 7Cedex 05France

Personalised recommendations