Skip to main content

Cell therapy for ischaemic heart disease: focus on the role of resident cardiac stem cells

Abstract

Myocardial infarction results in loss of cardiomyocytes, scar formation, ventricular remodelling, and eventually heart failure. In recent years, cell therapy has emerged as a potential new strategy for patients with ischaemic heart disease. This includes embryonic and bone marrow derived stem cells. Recent clinical studies showed ostensibly conflicting results of intracoronary infusion of autologous bone marrow derived stem cells in patients with acute or chronic myocardial infarction. Anyway, these results have stimulated additional clinical and pre-clinical studies to further enhance the beneficial effects of stem cell therapy. Recently, the existence of cardiac stem cells that reside in the heart itself was demonstrated. Their discovery has sparked intense hope for myocardial regeneration with cells that are obtained from the heart itself and are thereby inherently programmed to reconstitute cardiac tissue. These cells can be detected by several surface markers (e.g. c-kit, Sca-1, MDR1, Isl-1). Both in vitro and in vivo differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells has been demonstrated, and animal studies showed promising results on improvement of left ventricular function. This review will discuss current views regarding the feasibility of cardiac repair, and focus on the potential role of the resident cardiac stem and progenitor cells. (Neth Heart J 2009;17:199–207.)

This is a preview of subscription content, access via your institution.

References

  1. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 2005;115: 572–83.

    Google Scholar 

  2. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763–76.

    Google Scholar 

  3. Fijnvandraat AC, Moorman AF. [Stem cells: biology and possible application to myocardial infarct]. Ned Tijdschr Geneeskd 2004; 148:1186–91.

    Google Scholar 

  4. Oettgen P. Cardiac stem cell therapy; Need for optimization of efficacy and safety monitoring. Circulation 2006;114:353–8.

    Google Scholar 

  5. de Muinck E, Thompson C, Simons M. Progress and prospects: Cell based regenerative therapy for cardiovascular disease. Gene Ther 2006;13:659–71.

    Google Scholar 

  6. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001;108:407–14.

    Google Scholar 

  7. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 2007;50:1884–93.

    Google Scholar 

  8. Gepstein L. Derivation and potential applications of human embryonic stem cells. Circ Res 2002;91:866–76.

    Google Scholar 

  9. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–7.

    Google Scholar 

  10. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395–402.

    Google Scholar 

  11. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–5.

    Google Scholar 

  12. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697–705.

    Google Scholar 

  13. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93–8.

    Google Scholar 

  14. Atsma DE, Fibbe WE, Rabelink TJ. Opportunities and challenges for mesenchymal stem cell-mediated heart repair. Curr Opin Lipidol 2007;18:645–9.

    Google Scholar 

  15. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430–6.

    Google Scholar 

  16. Szmitko PE, Fedak PW, Weisel RD, Stewart DJ, Kutryk MJ, Verma S. Endothelial progenitor cells: new hope for a broken heart. Circulation 2003;107:3093–100.

    Google Scholar 

  17. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, et al. Chimerism of the transplanted heart. N Engl J Med 2002;346:5–15.

    Google Scholar 

  18. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664–8.

    Google Scholar 

  19. Chien KR. Stem cells: lost in translation. Nature 2004;428:607–8.

    Google Scholar 

  20. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913–8.

    Google Scholar 

  21. Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006;355:1222–32.

    Google Scholar 

  22. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355:1199–209.

    Google Scholar 

  23. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210–21.

    Google Scholar 

  24. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 2007;167:989–97.

    Google Scholar 

  25. Hirsch A, Nijveldt R, van der Vleuten PA, Tio RA, van der Giessen WJ, Marques KM, et al. Intracoronary infusion of autologous mononuclear bone marrow cells in patients with acute myocardial infarction treated with primary PCI: Pilot study of the multicenter HEBE trial. Catheter Cardiovasc Interv 2008;71:273–81.

    Google Scholar 

  26. Rosenzweig A. Cardiac Cell Therapy – Mixed Results from Mixed Cells. N Engl J Med 2006;355:1274–7.

    Google Scholar 

  27. Arnesen H, Lunde K, Aakhus S, Forfang K. Cell therapy in myocardial infarction. Lancet 2007;369:2142–3.

    Google Scholar 

  28. Boyle AJ, Schulman SP, Hare JM. Stem cell therapy for cardiac repair. Circulation 2006;114:339–52.

    Google Scholar 

  29. Fuster V, Sanz J, Viles-Gonzalez JF, Rajagopalan S. The utility of magnetic resonance imaging in cardiac tissue regeneration trials. Nat Clin Pract Cardiovasc Med 2006;(3 Suppl 1):S2–7.

    Google Scholar 

  30. Bartunek J, Wijns W, Heyndrickx GR, Vanderheyden M. Timing of intracoronary bone-marrow-derived stem cell transplantation after ST-elevation myocardial infarction. Nat Clin Pract Cardiovasc Med 2006;3(Suppl 1):S52–6.

    Google Scholar 

  31. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: doubleblind, randomised controlled trial. Lancet 2006;367:113–21.

    Google Scholar 

  32. Ge J, Li Y, Qian J, Shi J, Wang Q, Niu Y, et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart 2006;92:1764–7

    Google Scholar 

  33. Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett 2002;530:239–43.

    Google Scholar 

  34. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750–7.

    Google Scholar 

  35. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, et al. Adult Cardiac Sca-1-positive Cells Differentiate into Beating Cardiomyocytes. J Biol Chem 2004;279:11384–91.

    Google Scholar 

  36. Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature 2002;415:240–3.

    Google Scholar 

  37. Goumans MJ, de Boer TP, Smits AM, Laake LW, van Vliet P, Metz CHG, et al. TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 2008;1:138–49.

    Google Scholar 

  38. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A 2005;102:3766–71.

    Google Scholar 

  39. Nadin BM, Goodell MA, Hirschi KK. Phenotype and hematopoietic potential of side population cells throughout embryonic development. Blood 2003;102:2436–43.

    Google Scholar 

  40. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004; 95:911–21.

    Google Scholar 

  41. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 2003;100:12313–8.

    Google Scholar 

  42. van Vliet P, Sluijter JP, Doevendans PA, Goumans MJ. Isolation and expansion of resident cardiac progenitor cells. Expert Rev Cardiovasc Ther 2007;5:33–43.

    Google Scholar 

  43. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 2004;265:262–75.

    Google Scholar 

  44. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, et al. CD31− but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 2005;97: 52–61.

    Google Scholar 

  45. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005;433:647–53.

    Google Scholar 

  46. van Vliet P, Roccio M, Smits AM, van Oorschot AA, Metz CH, van Veen TA, et al. Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Neth Heart J 2008;16:163–9.

    Google Scholar 

  47. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, et al. Human cardiac stem cells. Proc Natl Acad Sci U S A 2007;104:14068–73.

    Google Scholar 

  48. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001;7: 1028–34.

    Google Scholar 

  49. Bolli R, Jneid H, Tang XL, Dawn B, Rimoldi O, Mosna F, et al. Intracoronary administration of cardiac stem cells improves cardiac function in pigs with old infarction. Circulation 2006;114(suppl II):II-239 (abstract).

    Google Scholar 

  50. Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, et al. The role of the sca-1+/CD31− cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 2006;24: 1779–88.

    Google Scholar 

  51. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007;115:896–908.

    Google Scholar 

  52. Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P, et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 2006;116:1865–77.

    Google Scholar 

  53. Anversa P, Leri A, Kajstura J. Cardiac Regeneration. J Am Coll Cardiol 2006;47:1769–76.

  54. Bolli R. Foreword – focused issue on cardiac repair by stem cells. Basic Res Cardiol 2005;100:469–70.

    Google Scholar 

  55. Chien KR. Lost and found: cardiac stem cell therapy revisited. J Clin Invest 2006;116:1838–40.

    Google Scholar 

  56. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006;20:661–9.

    Google Scholar 

  57. Timmers L, Kiang Lim S, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Research 2008;1:129–37.

    Google Scholar 

  58. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Amano K, Iba O, et al. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol 2002;22:1804–10.

    Google Scholar 

  59. Yoshioka T, Ageyama N, Shibata H, Yasu T, Misawa Y, Takeuchi K, et al. Repair of infarcted myocardium mediated by transplanted bone marrow-derived CD34+ stem cells in a nonhuman primate model. Stem Cells 2005;23:355–64.

    Google Scholar 

  60. Hirsch A, Nijveldt R, van der Vleuten PA, Biemond BJ, Doevendans PA, van Rossum AC, et al. Intracoronary infusion of autologous mononuclear bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention: Rationale and design of the HEBE trial – A prospective, multicenter, randomized trial. Am Heart J 2006;152:434–41.

    Google Scholar 

  61. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 2006;27:1114–22.

    Google Scholar 

  62. Sherman W, Martens TP, Viles-Gonzalez JF, Siminiak T. Catheterbased delivery of cells to the heart. Nat Clin Pract Cardiovasc Med 2006;(3 Suppl 1):S57–64.

    Google Scholar 

  63. Ripa RS, Wang Y, Jorgensen E, Johnsen HE, Hesse B, Kastrup J. Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. Eur Heart J 2006;27:1785–92.

    Google Scholar 

  64. Smits PC, van Langenhove G, Schaar M, Reijs A, Bakker WH, van der Giessen WJ, et al. Efficacy of percutaneous intramyocardial injections using a nonfluoroscopic 3-D mapping based catheter system. Cardiovasc Drugs Ther 2002;16:527–33.

    Google Scholar 

  65. Vale PR, Losordo DW, Milliken CE, McDonald MC, Gravelin LM, Curry CM, et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001;103:2138–43.

    Google Scholar 

  66. Beeres SL, Bax JJ, Dibbets-Schneider P, Stokkel MP, Fibbe WE, van der Wall EE, et al. Intramyocardial injection of autologous bone marrow mononuclear cells in patients with chronic myocardial infarction and severe left ventricular dysfunction. Am J Cardiol 2007;100:1094–8.

    Google Scholar 

  67. San Roman JA, Fernandez-Aviles F. The role of noninvasive imaging techniques in the assessment of stem cell therapy after acute myocardial infarction. Nat Clin Pract Cardiovasc Med 2006;3(Suppl 1):S38–41.

    Google Scholar 

  68. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, et al. Overexpression of Insulin-like Growth Factor-1 in Mice Protects from Myocyte Death after Infarction, Attenuating Ventricular Dilation, Wall Stress, and Cardiac Hypertrophy. J Clin Invest 1997;100:1991–9.

    Google Scholar 

  69. Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 2005;97:663–73.

    Google Scholar 

  70. Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 2005;102:8966–71.

    Google Scholar 

  71. Davis ME, Hsieh PCH, Takahashi T, Song Q, Zhang S, Kamm RD, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 2006;103: 8155–60.

    Google Scholar 

  72. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003;9: 1195–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. J. Chamuleau.

Additional information

Institute of Molecular Cardiology, University of Louisville, KY, USA, Department of Cardiology, Academic Medical Center, University of Amsterdam, Interuniversity Cardiology Institute of the Netherlands and Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands

Institute of Molecular Cardiology, University of Louisville, KY, USA, Interuniversity Cardiology Institute of the Netherlands and Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands

Institute of Molecular Cardiology, University of Louisville, KY, USA

Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

S.A.J. Chamuleau

Department of Cardiology, E03-511, University Medical Center Utrecht, PO Box 85090, 3508 AB Utrecht, the Netherlands

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chamuleau, S.A.J., Vrijsen, K.R., Rokosh, D.G. et al. Cell therapy for ischaemic heart disease: focus on the role of resident cardiac stem cells. NHJL 17, 199–207 (2009). https://doi.org/10.1007/BF03086247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03086247

  • ischaemic heart disease
  • stem cell therapy
  • regeneration
  • cardiac stem cell