Skip to main content
Log in

Cholesterol: nieuw therapeutisch target bij de ziekte van Alzheimer?

  • Artikelen
  • Published:
Neuropraxis

Abstract

Op dit moment zijn er in Nederland naar schatting 250.0000 mensen met dementie, van wie 60 á 70% de ziekte van Alzheimer heeft. De prevalentie zal, gezien de vergrijzing, in de toekomst sterk toenemen. Honderd jaar na de ontdekking van de ziekte zijn de onderliggende moleculaire mechanismen die leiden tot het geleidelijke verlies van cognitieve functies, zoals het geheugen, nog voor het grootste gedeelte onbekend. Op dit moment bestaat er geen werkzame therapie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figuur 1
Figuur 2
Figuur 3

Literatuur

  • Abildayeva, K., P.J. Jansen, et al., (2006). 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J Biol Chem 281(18): 12799–808.

    Google Scholar 

  • Bjorkhem, I., D. Lutjohann, et al., (1997). Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro. J Biol Chem 272(48): 30178–84.

    Google Scholar 

  • Bjorkhem, I. and S. Meaney (2004). Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24(5): 806–15.

    Google Scholar 

  • Bjorkhem, I., L. Starck, et al., (2001). Oxysterols in the circulation of patients with the Smith-Lemli-Opitz syndrome: abnormal levels of 24S- and 27-hydroxycholesterol. J Lipid Res 42(3): 366–71.

    Google Scholar 

  • Bretillon, L., D. Lutjohann, et al., (2000). Plasma levels of 24S-hydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface. J Lipid Res 41(5): 840–5.

    Google Scholar 

  • Brown, J., 3rd, C. Theisler, et al., (2004). Differential expression of cholesterol hydroxylases in Alzheimer's disease. J Biol Chem 279(33): 34674–81.

  • Burns, M.P., L. Vardanian, et al., (2006). The effects of ABCA1 on cholesterol efflux and Abeta levels in vitro and in vivo. J Neurochem 98(3): 792–800.

    Google Scholar 

  • Corder, E.H., A.M. Saunders, et al., (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261(5123): 921–3.

    Google Scholar 

  • Craft, S. (2005). Insulin resistance syndrome and Alzheimer's disease: age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiol Aging 26 Suppl 1: 65–9.

    Google Scholar 

  • Eckert, G.P., C. Kirsch, et al., (2001). Differential effects of lovastatin treatment on brain cholesterol levels in normal and apoE-deficient mice. Neuroreport 12(5): 883–7.

    Google Scholar 

  • Edmond, J., R.A. Korsak, et al., (1991). Dietary cholesterol and the origin of cholesterol in the brain of developing rats. J Nutr 121(9): 1323–30.

    Google Scholar 

  • Frears, E.R., D.J. Stephens, et al., (1999). The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10(8): 1699–705.

    Google Scholar 

  • George, A.J., R.M. Holsinger, et al., (2004). APP intracellular domain is increased and soluble Abeta is reduced with diet-induced hypercholesterolemia in a transgenic mouse model of Alzheimer disease. Neurobiol Dis 16(1): 124–32.

    Google Scholar 

  • Grant, W.B., A. Campbell, et al., (2002). The significance of environmental factors in the etiology of Alzheimer's disease. J Alzheimers Dis 4(3): 179–89.

    Google Scholar 

  • Hartmann, T. (2006). Role of amyloid precursor protein, amyloid-beta and gamma-secretase in cholesterol maintenance. Neurodegener Dis 3(4-5): 305–11.

    Google Scholar 

  • Hayashi, H., R.B. Campenot, et al., (2004). Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. J Biol Chem 279(14): 14009–15.

    Google Scholar 

  • Heverin, M., N. Bogdanovic, et al., (2004). Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer's disease. J Lipid Res 45(1): 186–93.

    Google Scholar 

  • Jansen, P.J., D. Lutjohann, et al., (2006). Dietary plant sterols accumulate in the brain. Biochim Biophys Acta 1761(4): 445–53.

    Google Scholar 

  • Joseph, S.B., A. Castrillo, et al., (2003). Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9(2): 213–9.

    Google Scholar 

  • Joseph, S.B. and P. Tontonoz (2003). lxr's: new therapeutic targets in atherosclerosis? Curr Opin Pharmacol 3(2): 192–7.

    Google Scholar 

  • Koldamova, R.P., I.M. Lefterov, et al., (2005). The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer's disease. lxr 280(6): 4079–88.

    Google Scholar 

  • Kolsch, H., D. Lutjohann, et al., (2002). Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer's disease. Mol Psychiatry 7(8): 899–902.

    Google Scholar 

  • Kotti, T.J., D.M. Ramirez, et al., (2006). Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci USA 103(10): 3869–74.

    Google Scholar 

  • Lemaire-Ewing, S., C. Prunet, et al., (2005). Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol 21(2): 97–114.

    Google Scholar 

  • Levin-Allerhand, J.A., C.E. Lominska, et al., (2002). Increased amyloid- levels in appswe transgenic mice treated chronically with a physiological high-fat high-cholesterol diet. J Nutr Health Aging 6(5): 315–9.

    Google Scholar 

  • Li, L., D. Cao, et al., (2006). Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol 60(6): 729–39.

    Google Scholar 

  • Lund, E.G., C. Xie, et al., (2003). Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 278(25): 22980–8.

    Google Scholar 

  • Lutjohann, D., O. Breuer, et al., (1996). Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA 93(18): 9799–804.

    Google Scholar 

  • Mahley, R.W. (1988). Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852): 622–30.

    Google Scholar 

  • Marx, J. (2001). Alzheimer's disease. Bad for the heart, bad for the mind? Science 294(5542): 508–9.

    Google Scholar 

  • Moghadasian, M.H., G. Salen, et al., (2002). Cerebrotendinous xanthomatosis: a rare disease with diverse manifestations. Arch Neurol 59(4): 527–9.

    Google Scholar 

  • Mori, T., D. Paris, et al., (2001). Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic app(sw) mice. J Neuropathol Exp Neurol 60(8): 778–85.

    Google Scholar 

  • Mulder, M., A. Blokland, et al., (2001). Apolipoprotein E protects against neuropathology induced by a high-fat diet and maintains the integrity of the blood-brain barrier during aging. Lab Invest 81(7): 953–60.

    Google Scholar 

  • Mulder, M., R. Ravid, et al., (1998). Reduced levels of cholesterol, phospholipids, and fatty acids in cerebrospinal fluid of Alzheimer disease patients are not related to apolipoprotein E4. Alzheimer Dis Assoc Disord 12(3): 198–203.

    Google Scholar 

  • Mulder, M. and D. Terwel (1998). Possible link between lipid metabolism and cerebral amyloid angiopathy in Alzheimer's disease: A role for high-density lipoproteins? Haemostasis 28(3–4): 174–94.

    Google Scholar 

  • Murphy, E.J., H.M. Huang, et al., (2006). Phospholipid mass is increased in fibroblasts bearing the Swedish amyloid precursor mutation. Brain Res Bull 69(1): 79–85.

    Google Scholar 

  • Oksman, M., H. Iivonen, et al., (2006). Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in app/ps transgenic mice. Neurobiol Dis 23(3): 563–72.

    Google Scholar 

  • Papassotiropoulos, A., D. Lutjohann, et al., (2002). 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J Psychiatr Res 36(1): 27–32.

    Google Scholar 

  • Park, I.H., E.M. Hwang, et al., (2003). Lovastatin enhances Abeta production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging 24(5): 637–43.

    Google Scholar 

  • Pitas, R. E., J.K. Boyles, et al., (1987). Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 917(1): 148–61.

    Google Scholar 

  • Poirier, J., A. Baccichet, et al., (1993). Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats. Neuroscience 55(1): 81–90.

    Google Scholar 

  • Poirier, J., J. Davignon, et al., (1993). Apolipoprotein E polymorphism and Alzheimer's disease. Lancet 342(8873): 697–9.

    Google Scholar 

  • Puglielli, L., B.C. Ellis, et al., (2004). Role of acyl-coenzyme a: cholesterol acyltransferase activity in the processing of the amyloid precursor protein. J Mol Neurosci 24(1): 93–6.

    Google Scholar 

  • Puglielli, L., G. Konopka, et al., (2001). Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 3(10): 905–12.

    Google Scholar 

  • Rebeck, G.W. (2004). Cholesterol efflux as a critical component of Alzheimer's disease pathogenesis. J Mol Neurosci 23(3): 219–24.

    Google Scholar 

  • Schneider, A., W. Schulz-Schaeffer, et al., (2006). Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons. Neurobiol Dis 23(3): 573–7.

    Google Scholar 

  • Schonknecht, P., D. Lutjohann, et al., (2002). Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer's disease compared to healthy controls. Neurosci Lett 324(1): 83–5.

    Google Scholar 

  • Simons, M., P. Keller, et al., (1998). Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95(11): 6460–4.

    Google Scholar 

  • Sparks, D.L. (1997). Coronary artery disease, hypertension, ApoE, and cholesterol: a link to Alzheimer's disease? Ann N Y Acad Sci 826: 128–46.

    Google Scholar 

  • Sun, Y., J. Yao, et al., (2003). Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion. J Biol Chem 278(30): 27688–94.

    Google Scholar 

  • Thelen, K.M., P. Falkai, et al., (2006). Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci Lett 403(1–2): 15–9.

    Google Scholar 

  • Thelen, K.M., K.M. Rentsch, et al., (2006). Brain cholesterol synthesis in mice is affected by high dose of simvastatin but not of pravastatin. J Pharmacol Exp Ther 316(3): 1146–52.

    Google Scholar 

  • Travert, C., S. Carreau, et al., (2006). Induction of apoptosis by 25-hydroxycholesterol in adult rat Leydig cells: protective effect of 17beta-estradiol. Reprod Toxicol 22(4): 564–70.

    Google Scholar 

  • Wagstaff, L.R., M.W. Mitton, et al., (2003). Statin-associated memory loss: analysis of 60 case reports and review of the literature. Pharmacotherapy 23(7): 871–80.

    Google Scholar 

  • Wang, L., G.U. Schuster, et al., (2002). Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc Natl Acad Sci USA 99(21): 13878–83.

    Google Scholar 

  • Whitney, K.D., M.A. Watson, et al., (2002). Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Mol Endocrinol 16(6): 1378–85.

    Google Scholar 

  • Wiegand, V., T.Y. Chang, et al., (2003). Transport of plasma membrane-derived cholesterol and the function of Niemann-Pick C1 Protein. Faseb J 17(6): 782–4.

    Google Scholar 

  • Wolozin, B. (2004). Cholesterol and the biology of Alzheimer's disease. Neuron 41(1): 7–10.

    Google Scholar 

  • Xie, C., E.G. Lund, et al., (2003). Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. J Lipid Res 44(9): 1780–9.

    Google Scholar 

  • Yang, C., L. Yu, et al., (2004). Disruption of cholesterol homeostasis by plant sterols. J Clin Invest 114(6): 813–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Mulder.

Additional information

Mw. dr. M.Mulder, biologe, Universiteit Maastricht, Afdeling Basale Neurowetenschappen, Instituut Hersenen & Gedrag, EURON, Postbus 616, 6200 MD Maastricht,

Drs. T. Vanmierlo, moleculair bioloog, Universiteit Maastricht, euron

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulder, M., van Mierlo, T. Cholesterol: nieuw therapeutisch target bij de ziekte van Alzheimer?. NEPR 11, 64–68 (2007). https://doi.org/10.1007/BF03079128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03079128

Navigation