Skip to main content
Log in

Het beloningssysteem in de hersenen: weten, meten en ingrijpen

  • Artikelen
  • Published:
Neuropraxis

Abstract

Verslaving en depressie zijn aandoeningen waarbij het beloningssysteem is ontregeld en de motivatie en het levensgeluk ernstig zijn aangetast. Twee vragen wil ik hier beantwoorden: heeft een wetenschappelijke benadering van motivatie en geluk wel bestaansrecht en hoe zouden eventuele interventies moeten plaatsvinden?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figuur

Literatuur

  • Barker, A.T., Jalinous, R. & Freeston, I.L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet 1: 1106–7.

    Google Scholar 

  • Boileau, I., Benkelfat, C., Assad, J., Leyton, M., Pihl, R.O. & Dagher, A. (2001). Acute ethanol consumption increases synaptic dopamine in ventral striatum: a pet/11C-Raclopride study in healthy volunteers. Neuroimage 13: S1029.

  • Bornke, C., Schulte, T., Przuntek, H. & Muller, T. (2004). Clinical effects of repetitive transcranial magnetic stimulation versus acute levodopa challenge in Parkinson's disease. J Neural Transm Suppl 68: 61–7.

    Google Scholar 

  • Breiter, H.C., Gollub, R.L., Weisskoff, R.M., Kennedy, D.N., Makris, N., Berke, J.D., Goodman, J.M., Kantor, H.L., Gastfriend, D.R., Riorden, J.P., Mathew, R.T., Rosen, B.R. & Hyman, S.E. (1997). Acute effects of cocaine on human brain activity and emotion. Neuron 19: 591–611.

    Google Scholar 

  • Crow, T.J. (1971). The relation between electrical self-stimulation sites and catecholamine-containing neurones in the rat mesencephalon. Experientia 27: 662.

    Google Scholar 

  • Dewey, S.L., Smith, G.S., Logan, J., Brodie, J.D., Fowler, J.S. & Wolf, A.P. (1993a). Striatal binding of the pet ligand 11C-raclopride is altered by drugs that modify synaptic dopamine levels. Synapse 13: 350–6.

    Google Scholar 

  • Dewey, S.L., Smith, G.S., Logan, J., Brodie, J.D., Simkowitz, P., MacGregor, R.R., Fowler, J.S., Volkow, N.D. & Wolf, A.P. (1993b). Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects. Proceedings of the National Academy of Sciences of the United States of America 90: 11816–20.

    Google Scholar 

  • Eichhammer, P., Johann, M, Kharraz, A., Binder, H., Pittrow, D., Wodarz, N. & Hajak, G. (2003). High-frequency repetitive transcranial magnetic stimulation decreases cigarette smoking. J Clin Psychiatry 64: 951–3.

    Google Scholar 

  • Erhardt, A., Sillaber, I., Welt, T., Muller, M.B., Singewald, N. & Keck, M.E. (2004). Repetitive transcranial magnetic stimulation increases the release of dopamine in the nucleus accumbens shell of morphine-sensitized rats during abstinence. Neuropsychopharmacology 29: 2074–80.

    Google Scholar 

  • Ferris, C.F., Snowdon, C.T., King, J.A., Sullivan, J.M. Jr., Ziegler, T.E., Olson, D.P., Schultz-Darken, N.J., Tannenbaum, P.L., Ludwig, R., Wu, Z., Einspanier, A., Vaughan, J.T. & Duong, T.Q. (2004). Activation of neural pathways associated with sexual arousal in non-human primates. J Magn Reson Imaging 19:168–75.

    Google Scholar 

  • Georgiadis, J.R., Kortekaas, R., Kuipers, R., Nieuwenburg, A., Pruim, J., Reinders, A.A. & Holstege, G. (2006). Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women. Eur J Neurosci 24: 3305–16.

    Google Scholar 

  • Hamann, S. & Mao, H. (2002). Positive and negative emotional verbal stimuli elicit activity in the left amygdala. Neuroreport 13: 15–9.

    Google Scholar 

  • Hollerman, J.R. & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience 1: 304–9.

    Google Scholar 

  • Johann, M., Wiegand, R., Kharraz, A., Bobbe, G., Sommer, G., Hajak, G., Wodarz, N. & Eichhammer, P. (2003). [Transcranial magnetic stimulation for nicotine dependence]. Psychiatr Prax 30 Suppl 2: S129–S131.

    Google Scholar 

  • Kanno, M., Matsumoto, M., Togashi, H., Yoshioka, M. & Mano, Y. (2004). Effects of acute repetitive transcranial magnetic stimulation on dopamine release in the rat dorsolateral striatum. J Neurol Sci 217: 73–81.

    Google Scholar 

  • Keck, M.E., Sillaber, I., Ebner, K., Welt, T., Toschi, N., Kaehler, S.T., Singewald, N., Philippu, A., Elbel, G.K., Wotjak, C.T., Holsboer, F., Landgraf, R. & Engelmann, M. (2000). Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 12: 3713–20.

    Google Scholar 

  • Keck, M.E., Welt, T., Muller, M.B., Erhardt, A., Ohl, F., Toschi, N., Holsboer, F. & Sillaber, I. (2002). Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology 43: 101–9.

    Google Scholar 

  • Knutson, B., Westdorp, A., Kaiser, E. & Hommer, D. (2000). fmri visualization of brain activity during a monetary incentive delay task. Neuroimage 12: 20–7.

    Google Scholar 

  • Kortekaas, R., Maguire, R.P., Cremers, T.I., Dijkstra, D., van Waarde, A. & Leenders, K.L. 2004. In vivo binding behaviour of dopamine receptor agoist (+)-PD 128907 and implications for the ‘ceiling effect’ in endogenous competition studies with [11C]raclopride ’ a positron emission tomography study in Macaca mulatta. J Cereb Blood Flow Metab 531–5.

  • Lee, B.C., Bing, G., Jhoo, W.K., Yoon, J.M., Kang, K.S., Shin, E.J., Kim, W.K., Ko, K.H. & Kim, H.C. (2001). Prenatal exposure to magnetic field increases dopamine levels in the striatum of offspring. Clin Exp Pharmacol Physiol 28: 884–6.

    Google Scholar 

  • Martinez, D., Slifstein, M., Broft, A., Mawlawi, O., Hwang, D.R., Huang, Y., Cooper, T., Kegeles, L., Zarahn, E., Abi-Dargham, A., Haber, S.N. & Laruelle, M. (2003). Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 23: 285–300.

    Google Scholar 

  • McClure, S.M., Berns, G.S. & Montague, P.R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron 38: 339–46.

    Google Scholar 

  • Mitterschiffthaler, M.T., Kumari, V., Malhi, G.S., Brown, R.G., Giampietro, V.P., Brammer, M.J., Suckling, J., Poon, L., Simmons, A., Andrew, C. & Sharma, T. (2003). Neural response to pleasant stimuli in anhedonia: an fmristudy. Neuroreport 14: 177–82.

    Google Scholar 

  • Ohnishi, T., Hayashi, T., Okabe, S., Nonaka, I., Matsuda, H., Iida, H., Imabayashi, E., Watabe, H., Miyake, Y., Ogawa, M., Teramoto, N., Ohta, Y., Ejima, N., Sawada, T. & Ugawa, Y.(2004). Endogenous dopamine release induced by repetitive transcranial magnetic stimulation over the primary motor cortex: an [11C]raclopride positron emission tomography study in anesthetized macaque monkeys. Biol Psychiatry 55: 484–9.

    Google Scholar 

  • Olds, J. & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47: 419–27.

    Google Scholar 

  • Pappata, S., Dehaene, S., Poline, J.B., Gregoire, M.C., Jobert, A., Delforge, J., Frouin, V., Bottlaender, M., Dolle, F., Di Giamberardino, L. & Syrota, A. (2002). In vivo detection of striatal dopamine release during reward: a pet study with [(11)C]raclopride and a single dynamic scan approach. Neuroimage 16: 1015–27.

  • Pogarell, O., Koch, W., Popperl, G., Tatsch, K., Jakob, F., Zwanzger, P., Mulert, C., Rupprecht, R., Moller, H.J., Hegerl, U. & Padberg, F. (2005). Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: Preliminary results of a dynamic [(123)I] ibzm spect study. J Psychiatr Res.

  • Ramsey, N.F., Kirkby, B.S., Van Gelderen, P., Berman, K.F., Duyn, J.H., Frank, J.A., Mattay, V.S., Van Horn, J.D., Esposito, G., Moonen, C.T. & Weinberger, D.R. (1996). Functional mapping of human sensorimotor cortex with 3D bold fmri correlates highly with H2(15)O pet rcbf. J Cereb Blood Flow Metab 16: 755–64.

    Google Scholar 

  • Schlaepfer, T.E., Pearlson, G.D., Wong, D.F., Marenco, S. & Dannals, R.F. (1997). pet study of competition between intravenous cocaine and [11C]raclopride at dopamine receptors in human subjects. Am J Psychiatry 154: 1209–13.

    Google Scholar 

  • Shaul, U., Ben Shachar, D., Karry, R. & Klein, E. (2003). Modulation of frequency and duration of repetitive magnetic stimulation affects catecholamine levels and tyrosine hydroxylase activity in human neuroblastoma cells: implication for the antidepressant effect of rtms. Int J Neuropsychopharmacol 6: 233–41.

  • Shimamoto, H., Takasaki, K., Shigemori, M., Imaizumi, T., Ayabe, M. & Shoji, H. (2001). Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson's disease. J Neurol 248 Suppl 3: III48–III52.

    Google Scholar 

  • Sieron, A., Labus, L., Nowak, P., Cieslar, G., Brus, H., Durczok, A., Zagzil, T., Kostrzewa, R.M. & Brus, R. (2004). Alternating extremely low frequency magnetic field increases turnover of dopamine and serotonin in rat frontal cortex. Bioelectromagnetics 25: 426–30.

    Google Scholar 

  • Small, D.M., Jones-Gotman, M. & Dagher, A. (2003). Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19: 1709–15.

    Google Scholar 

  • Strafella, A.P., Paus, T., Barrett, J. & Dagher, A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21: RC157.

  • Strafella, A.P., Paus, T., Fraraccio, M., Dagher, A. (2003). Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 126: 2609–15.

    Google Scholar 

  • Udo de Haes, J.I., Kortekaas, R., van Waarde, A., Maguire, R.P., Pruim, J. & den Boer, J.A. (2005). Assessment of methylphenidate-induced changes in binding of continuously infused [(11)C]-raclopride in healthy human subjects: correlation with subjective effects. Psychopharmacology (Berl) 1–9.

  • Vollenweider, F.X., Vontobel, P., Hell, D. & Leenders, K.L. (1999). 5-ht modulation of dopamine release in basal ganglia in psilocybin- induced psychosis in man’a pet study with [11C]raclopride. Neuropsychopharmacology 20: 424–33.

    Google Scholar 

  • Vollenweider, F.X., Vontobel, P., Øye, I., Hell, D. & Leenders, K.L. (2000). Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride pet study of a model psychosis in humans. J Psychiatr Res 34: 35–43.

    Google Scholar 

  • Zangen, A. & Hyodo, K. (2002). Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. Neuroreport 13: 2401–5.

    Google Scholar 

  • Zwanzger, P., Ella, R., Keck, M.E., Rupprecht, R. & Padberg, F. (2002). Occurrence of delusions during repetitive transcranial magnetic stimulation (rtms) in major depression. Biol Psychiatry 51: 602–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruud Kortekaas.

Additional information

Dr. R. Kortekaas, hersenonderzoeker, universitair docent, Afdeling Anatomie, Universitair Medisch Centrum Groningen, Postbus 30001, 9700 RB Groningen,

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortekaas, R. Het beloningssysteem in de hersenen: weten, meten en ingrijpen. NEPR 11, 38–42 (2007). https://doi.org/10.1007/BF03079122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03079122

Navigation