Skip to main content
Log in

Microvasculaire schade en cognitieve achteruitgang bij type-1-diabetes

  • Artikelen
  • Published:
Neuropraxis

Abstract

Type-1-diabetes is een stofwisselingsziekte die wordt gekenmerkt door een chronisch verhoogde bloedglucosespiegel (hyperglykemie) als gevolg van een insulinesecretiedefect. De behandeling bestaat uit het meermalen daags toedienen van insuline. Ondanks de beschikbaarheid van diverse soorten insuline en moderne toedieningsystemen en technieken om thuis de bloedglucosewaarden te controleren, ervaren patiënten fluctuaties in hun bloedglucosespiegel, variërend van hypoglykemie (lage bloedglucosewaarden) tot hyperglykemie. Langdurige hyperglykemie is verantwoordelijk voor het ontstaan van microvasculaire complicaties, zoals retinopathie, nefropathie en perifere neuropathie. Onbekend is of microvasculaire schade zich ook in het brein manifesteert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figuur

Literatuur

  • Brands, A.M., Biessels, G.J., de Haan, E.H., Kappelle, L.J. & Kessels, R.P. (2005). The Effects of Type-1-diabetes on Cognitive Performance: A meta-analysis. Diabetes Care 28: 726–735.

    Google Scholar 

  • Brands, A.M., Kessels, R.P., Hoogma, R.P., et al. (2006). Cognitive performance, psychological well-being, and brain magnetic resonance imaging in older patients with type-1-diabetes. Diabetes 55: 1800–1806.

    Google Scholar 

  • Chabriat, H., Sachon, C., Levasseur, M., et al. (1994). Brain metabolism after recurrent insulin induced hypoglycaemic episodes: a pet study. J Neurol Neurosurg Psychiatry 57: 1360–1365.

    Google Scholar 

  • Cranston, I., Reed, L.J., Marsden, P.K. & Amiel, S.A. (2001). Changes in regional brain (18)F-fluorodeoxyglucose uptake at hypoglycemia in type 1 diabetic men associated with hypoglycemia unawareness and counter-regulatory failure. Diabetes 50: 2329–2336.

    Google Scholar 

  • DeCarli, C., Murphy, D.G., Tranh, M., et al. (1995). The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology 45: 2077–2084.

    Google Scholar 

  • De Jong, R., (1950). The nervous system complications in diabetes mellitus with special reference to cerebrovascular changes. J Nerv Ment Dis 111: 181–206.

    Google Scholar 

  • De la Torre, J.C. & Mussivand, T. (1993). Can disturbed brain microcirculation cause Alzheimer's disease? Neurol Res 15: 146–153.

    Google Scholar 

  • Dow, C., Seidenberg, M. & Hermann, B. (2004). Relationship between information processing speed in temporal lobe epilepsy and white matter volume. Epilepsy Behav 5: 919–925.

    Google Scholar 

  • Farkas, E. & Luiten, P.G. (2001). Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol 64: 575–611.

    Google Scholar 

  • Ferguson, S.C., Blane, A., Perros, P., et al. (2003). Cognitive ability and brain structure in type-1-diabetes: relation to microangiopathy and preceding severe hypoglycemia. Diabetes 52: 149–156.

    Google Scholar 

  • Filley, C. (2001). The behavioral neurology of white matter. Oxford University Press, New York.

  • Fulesdi, B., Limburg, M., Bereczki, D., et al. (1997). Impairment of cerebrovascular reactivity in long-term type-1-diabetes. Diabetes 46: 1840–1845.

    Google Scholar 

  • Greene, D.A., Lattimer, S.A. & Sima, A.A. (1987). Sorbitol, phosphoinositides, and sodium-potassium-atpase in the pathogenesis of diabetic complications. N Engl J Med 316: 599–606.

    Google Scholar 

  • Johnson, P.C., Brendel, K. & Meezan, E. (1982). Thickened cerebral cortical capillary basement membranes in diabetics. Arch Pathol Lab Med 106: 214–217.

    Google Scholar 

  • Kalaria, R.N. & Hedera, P. (1995). Differential degeneration of the cerebral microvasculature in Alzheimer's disease. Neuroreport 6: 477–480.

    Google Scholar 

  • Kaplan, J.G., Katzman, R., Horoupian, D.S., Fuld, P.A., Mayeux, R. & Hays, A.P. (1985). Progressive dementia, visual deficits, amyotrophy, and microinfarcts. Neurology 35: 789–796.

    Google Scholar 

  • Kawamura, J., Meyer, J.S., Terayama, Y. & Weathers, S. (1991). Leukoaraiosis correlates with cerebral hypoperfusion in vascular dementia. Stroke 22: 609–614.

    Google Scholar 

  • Keymeulen, B., Jacobs, A., de Metz, K., de Sadeleer, C., Bossuyt & A., Somers, G. (1995). Regional cerebral hypoperfusion in long-term type 1 (insulin-dependent) diabetic patients: relation to hypoglycaemic events. Nucl Med Commun 16: 10–16.

    Google Scholar 

  • Kobari, M., Meyer, J.S. & Ichijo, M. (1990). Leuko-araiosis, cerebral atrophy, and cerebral perfusion in normal aging. Arch Neurol 47: 161–165.

    Google Scholar 

  • Kovari, E., Gold, G., Herrmann, F.R., et al. (2004). Cortical microinfarcts and demyelination significantly affect cognition in brain aging. Stroke 35: 410–414.

    Google Scholar 

  • Kuhl, D.E., Metter, E.J., Riege, W.H. & Hawkins, R.A. (1984). The effect of normal aging on patterns of local cerebral glucose utilization. Ann Neurol 15 Suppl: S133–137.

  • MacLeod, K.M., Hepburn, D.A., Deary, I.J., et al. (1994), Regional cerebral blood flow in iddm patients: effects of diabetes and of recurrent severe hypoglycaemia. Diabetologia 37: 257–263.

    Google Scholar 

  • MacLeod, K.M., Gold, A.E., Ebmeier, K.P., et al. (1996). The effects of acute hypoglycemia on relative cerebral blood flow distribution in patients with type I (insulin-dependent) diabetes and impaired hypoglycemia awareness. Metabolism 45: 974–980.

    Google Scholar 

  • Marchal, G., Rioux, P., Petit-Taboue, M.C., et al. (1992). Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 49: 1013–1020.

    Google Scholar 

  • Mielke, R., Herholz, K., Grond, M., Kessler, J. & Heiss, W.D. (1992). Severity of vascular dementia is related to volume of metabolically impaired tissue. Arch Neurol 49: 909–913.

    Google Scholar 

  • Miles, W. & Root, F. (1922). Psychologic tests applied to diabetic patients. Archives of Internal Medicine 30: 769–777.

    Google Scholar 

  • Reichard, P., Berglund, B., Britz, A., Cars, I., Nilsson, B.Y. & Rosenqvist, U. (1991). Intensified conventional insulin treatment retards the microvascular complications of insulin-dependent diabetes mellitus (IDDM): the Stockholm Diabetes Intervention Study (sdis) after 5 years. J Intern Med 230: 101–108.

    Google Scholar 

  • Reiche, W., Weiller, C., Weigmann, R., et al. (1991). [A comparison of mrt and spect findings in patients with cerebral microangiopathy]. Nuklearmedizin 30: 161–169.

    Google Scholar 

  • Reske-Nielsen, E., Lundbaek, K. & Rafeisen, Q.J. (1965). Pathological changes in the cerebral and peripheral nervous system of young long-term diabetics. Diabetic encephalopathy. Diabetologia 1: 233–241.

    Google Scholar 

  • Ryan, C.M., Geckle, M.O. & Orchard, T.J. (2003). Cognitive efficiency declines over time in adults with Type-1-diabetes: effects of micro- and macrovascular complications. Diabetologia 46: 940–948.

    Google Scholar 

  • Ryan, C.M., Williams, T.M., Orchard, T.J. & Finegold, D.N. (1992). Psychomotor slowing is associated with distal symmetrical polyneuropathy in adults with diabetes mellitus. Diabetes 41: 107–113.

    Google Scholar 

  • Sabri, O., Hellwig, D., Schreckenberger, M., et al. (2000), Influence of diabetes mellitus on regional cerebral glucose metabolism and regional cerebral blood flow. Nucl Med Commun 21: 19.

    Google Scholar 

  • Sabri, O., Ringelstein, E.B., Hellwig, D., et al. (1999). Neuropsychological impairment correlates with hypoperfusion and hypometabolism but not with severity of white matter lesions on mri in patients with cerebral microangiopathy. Stroke 30: 556–566.

    Google Scholar 

  • Sanfilipo, M., Lafargue, T., Rusinek, H., et al. (2002). Cognitive performance in schizophrenia: relationship to regional brain volumes and psychiatric symptoms. Psychiatry Res 116: 1–23.

    Google Scholar 

  • Segel, S.A., Fanelli, C.G., Dence, C.S., et al. (2001). Blood-to-brain glucose transport, cerebral glucose metabolism, and cerebral blood flow are not increased after hypoglycemia. Diabetes 50: 1911–1917.

    Google Scholar 

  • Snowdon, D.A., Greiner, L.H., Mortimer, J.A., Riley, K.P., Greiner, P.A. & Markesbery, W.R. (1997). Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. jama 277: 813–817.

    Google Scholar 

  • Tallroth, G., Ryding, E. & Agardh, C.D. (1993). The influence of hypoglycaemia on regional cerebral blood flow and cerebral volume in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 36: 530–535.

    Google Scholar 

  • The Diabetes Control and Complications Trial Research Group (1996). Effects of intensive diabetes therapy on neuropsychological function in adults in the Diabetes Control and Complications Trial. Ann Intern Med 124: 379–388.

    Google Scholar 

  • Tomlinson, B.E., Blessed, G. & Roth, M. (1970). Observations on the brains of demented old people. J Neurol Sci 11: 205–242.

    Google Scholar 

  • Wessels, A.M., Rombouts, S.A., Simsek, S., et al. (2006). Microvascular disease in type-1-diabetes alters brain activation: a functional magnetic resonance imaging study. Diabetes 55: 334–340.

    Google Scholar 

  • Wessels, A.M., Simsek, S., Remijnse, P.L., et al. (2006). Voxel-based morphometry demonstrates reduced grey matter density on brain mri in patients with diabetic retinopathy. Diabetologia 49: 2474–2480.

    Google Scholar 

  • Wong, T.Y., Klein, R., Klein, B.E., Tielsch, J.M., Hubbard, L. & Nieto, F.J. (2001). Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv Ophthalmol 46: 59–80.

    Google Scholar 

  • Yamaguchi, T., Kanno, I., Uemura, K., et al. (1986). Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17: 1220–1228.

    Google Scholar 

  • Yao, H., Sadoshima, S., Kuwabara, Y., Ichiya, Y. & Fujishima, M. (1990). Cerebral blood flow and oxygen metabolism in patients with vascular dementia of the Binswanger type. Stroke 21: 1694–1699.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alette Wessels.

Additional information

Mw. dr. A.M. Wessels, neuropsycholoog, vu medisch centrum, Afd. Medische Psychologie, Van der Boechorststraat 7, 1081 BT Amsterdam;

prof. dr. F.J. Snoek, psycholoog, vu medisch centrum Afd. Medische Psychologie;

prof. dr. F. Barkhof, radioloog, vu medisch centrum Afd. Radiologie;

prof. dr. R.J. Heine, internist-diabetoloog, vu medisch centrum, Afd. Endocrinologie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wessels, A., Snoek, F., Barkhof, F. et al. Microvasculaire schade en cognitieve achteruitgang bij type-1-diabetes. NEPR 11, 32–37 (2007). https://doi.org/10.1007/BF03079121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03079121

Navigation