Skip to main content
Log in

Genetische basis, terminologie en het risico voor de ontwikkeling van kiemceltumoren bij stoornissen in de geslachtsontwikkeling

  • Published:
Tijdschrift voor Kindergeneeskunde

Samenvatting

De laatste jaren is significante vooruitgang geboekt in het onderzoek naar genen die betrokken zijn bij de normale geslachtsontwikkeling en hoe mutaties in deze genen leiden tot een stoornis in dit proces. Tevens is inzicht verkregen in het ontstaan van kiemceltumoren, die met een verhoogde frequentie voorkomen bij patiënten met bepaalde vormen van een gestoorde geslachtsontwikkeling. Tegelijk is de gangbare nomenclatuur en classificatie herzien. Dit artikel biedt een overzicht van de geslachtsontwikkeling en een update over de kennis van de genen die betrokken zijn bij, en aanleiding kunnen geven tot, een abnormaal verloop van dit proces. De vernieuwde nomenclatuur en classificatie, gebruikt sinds 2006, worden toegelicht. Ten slotte wordt het risico op de ontwikkeling van kiemceltumoren bij de verschillende vormen van deze aandoeningen besproken en wordt beschreven hoe recent onderzoek erin geslaagd is een risicoanalyse mogelijk te maken.

Vanuit psychologisch perspectief wordt de laatste jaren in toenemende mate het belang benadrukt om bij ernstige ondervirilisatie waar mogelijk te kiezen voor de mannelijke genderidentiteit. Patiëntenbelangenverenigingen pleiten voor een meer conservatief beleid met betrekking tot gonadectomie; er lijkt een vernieuwde interesse te groeien bij artsen, wetenschappers en overheidsinstanties voor het opzetten van internationale studies en samenwerkingsverbanden om het beleid bij patiënten met een gestoorde geslachtsontwikkeling te optimaliseren. De verwachting is dan ook dat al deze factoren samen in de komende jaren zullen leiden tot nieuwe richtlijnen met betrekking tot de optimale zorg voor patiënten bij wie de geslachtsontwikkeling abnormaal is verlopen.

Summary

In recent years, considerable progress has been made in the characterization of genes involved in normal sex development, and in how mutations in these genes may lead to abnormalities in this process. Moreover, promising results have been obtained in the research concerning the development of germ cell tumors in these patients. At the same time, the commonly used nomenclature and classification system describing the various forms of disorders of sex development has been revised. This article summarizes our actual knowledge with regard to normal sex development and the various genes that are involved in this process and describes how mutations in these genes may lead to a disturbed process of sex development. The renewed nomenclature and classification system, which are in use since 2006, are explained; finally the risk for the development of germ cell tumors in patients with disorders of sex development is discussed, and it is shown how recent research has offered tools to estimate the risk in the individual patient.

Psychological research is increasingly emphasizing the importance to consider male gender identity wherever possible in cases of severe undervirilization. Patient advocacy groups demand a more conservative approach with regard to gonadectomy. Medical doctors, scientists, as well as governmental instances are increasingly interested in the development of international research protocols and collaborations in order to optimize the management of patients with disorders of sex development in the future. As a consequence, it is expected that new guidelines for the optimal care of these patients will be proposed in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Primitieve organisatie van kiemcellen en gepolariseerde sertolicellen, gekenmerkt door activatie van SOX9.

  2. Ook wel POU5F1 genoemd.

Literatuur

  1. Hughes I, Houk C, Ahmed SF, Lee PA.; LWPES Consensus Group; ESPE Consensus Group. Consensus statement on the management of intersex disorders. Arch Dis Child. 2006;91:554-63.

    Google Scholar 

  2. Lee PA, Houk CP, Ahmed SF, Hughes IA. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics. 2006;118:e488-500.

    Google Scholar 

  3. Brennan J, Capel B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet. 2004;5:509-21.

    Google Scholar 

  4. Grumbach MM, Hughes IA, Conte FA. Disorders of sex differentiation. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KM, eds. Williams textbook of endocrinology, 10th ed. Philadelphia: Saunders, 2003. p. 842-1002.

  5. Wylie C. Germ cells. Curr Opin Genet Dev. 2000; 10:410-3.

  6. Wilhelm D, Palmer S, Koopman P. Sex determination and gonadal development in mammals. Physiol Rev. 2007;87:1-28.

    Google Scholar 

  7. Vaiman D, Pailhoux E. Mammalian sex reversal and intersexuality: deciphering the sex-determination cascade. Trends Genet. 2000;16:488-94.

    Google Scholar 

  8. Parma P, Radi O, Vidal V, et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet. 2006;38:1304-9.

    Google Scholar 

  9. Kobayashi A, Behringer RR. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet. 2003;4:969-80.

    Google Scholar 

  10. Anderson RA, Sharpe RM. Regulation of inhibin production in the human male and its clinical applications. Int J Androl. 2000;23:136-44.

    Google Scholar 

  11. Ferlin A, Foresta C. Insulin-like factor 3: a novel circulating hormone of testicular origin in humans. Ann NY Acad Sci. 2005;1041:497-505.

    Google Scholar 

  12. Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ. A WNT4 mutation associated with Mullerian-duct regression and virilization in a 46,XX woman. N Engl J Med. 2004;351:792-8.

    Google Scholar 

  13. Miller WL. Disorders of androgen biosynthesis. Semin Reprod Med. 2002;20:205-16.

    Google Scholar 

  14. Quigley CA, De Bellis A, Marschke KB, et al. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev. 1995;16:271-321.

    Google Scholar 

  15. Hannema SE, Scott IS, Hodapp J, et al. Residual activity of mutant androgen receptors explains wolffian duct development in the complete androgen insensitivity syndrome. J Clin Endocrinol Metab. 2004;89:5815-22.

    Google Scholar 

  16. Boehmer AL, Brinkmann O, Bruggenwirth H, et al. Genotype versus phenotype in families with androgen insensitivity syndrome. J Clin Endocrinol Metab. 2001;86:4151-60.

    Google Scholar 

  17. Houk CP, Lee PA. Intersexed states: diagnosis and management. Endocrinol Metab Clin North Am. 2005;34:791-810, xi.

    Google Scholar 

  18. Manuel M, Katayama PK, Jones HW Jr. The age of occurrence of gonadal tumors in intersex patients with a Y chromosome. Am J Obstet Gynecol. 1976;124:293-300.

    Google Scholar 

  19. Scully RE. Gonadoblastoma. A review of 74 cases. Cancer. 1970;25:1340-56.

    Google Scholar 

  20. Verp MS, Simpson JL. Abnormal sexual differentiation and neoplasia. Cancer Genet Cytogenet. 1987;25:191-218.

    Google Scholar 

  21. Tsuchiya K, Reijo R, Page DC, Disteche CM. Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome. Am J Hum Genet. 1995;57:1400-7.

    Google Scholar 

  22. Salo P, Kaariainen H, Petrovic V, et al. Molecular mapping of the putative gonadoblastoma locus on the Y chromosome. Genes Chromosomes Cancer. 1995;14:210-4.

    Google Scholar 

  23. Page DC. Hypothesis: a Y-chromosomal gene causes gonadoblastoma in dysgenetic gonads. Development. 1987;101(Suppl):151-5.

    Google Scholar 

  24. Lau YF. Gonadoblastoma, testicular and prostate cancers, and the TSPY gene. Am J Hum Genet. 1999;64:921-7.

    Google Scholar 

  25. Lau Y, Chou P, Iezzoni J, et al. Expression of a candidate gene for the gonadoblastoma locus in gonadoblastoma and testicular seminoma. Cytogenet Cell Genet. 2000;91:160-4.

    Google Scholar 

  26. Kersemaekers AM, Honecker F, Stoop H, et al. Identification of germ cells at risk for neoplastic transformation in gonadoblastoma. Hum Pathol. 2005;36:512-21.

    Google Scholar 

  27. Li Y, Tabatabai ZL, Lee TL, et al. The Y-encoded TSPY protein: a significant marker potentially plays a role in the pathogenesis of testicular germ cell tumors. Hum Pathol. 2007;38:1470-81.

    Google Scholar 

  28. Cools M, Honecker F, Stoop H, et al. Maturation delay of germ cells in trisomy 21 fetuses results in increased risk for the development of testicular germ cell tumors. Hum Pathol. 2006;37:101-11.

    Google Scholar 

  29. Cools M, Aerde K van, Kersemaekers AMF, et al. Morphological and immunohistochemical differences between gonadal maturation delay and early germ cell neoplasia in patients with undervirilisation syndromes. J Clin Endocrinol Metab. 2005;90:5295-303.

    Google Scholar 

  30. Cools M, Stoop H, Kersemaekers AM, et al. Gonadoblastoma arising in undifferentiated gonadal tissue within dysgenetic gonads. J Clin Endocrinol Metab. 2006;91:2404-13.

    Google Scholar 

  31. Honecker F, Stoop H, Krijger RR de, et al. Pathobiological implications of the expression of markers of testicular carcinoma in situ by fetal germ cells. J Pathol. 2004;203:849-57.

    Google Scholar 

  32. Stoop H, Honecker F, Cools M, et al. Differentiation and development of human female germ cells during prenatal gonadogenesis: an immunohistochemical study. Hum Reprod. 2005;20:1466-76.

    Google Scholar 

  33. Kehler J, Tolkunova E, Koschorz B, et al. Oct4 is required for primordial germ cell survival. EMBO Rep. 2004;5:1078-83.

    Google Scholar 

  34. Schnieders F, Dork T, Arnemann J, et al. Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues. Hum Mol Genet. 1996;5:1801-7.

    Google Scholar 

  35. Cools M, Drop SL, Wolffenbuttel KP, et al. Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr Rev. 2006;27:468-84.

    Google Scholar 

  36. Looijenga LH, Hersmus R, Gillis AJ, et al. Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res. 2006;66:290-302.

    Google Scholar 

  37. Niekerk WA van, Retief AE. The gonads of human true hermaphrodites. Hum Genet. 1981;58:117-22.

    Google Scholar 

  38. Berthelsen JG, Skakkebaek NE. Value of testicular biopsy in diagnosing carcinoma in situ testis. Scand J Urol Nephrol. 1981;15:165-8.

    Google Scholar 

  39. Kildal W, Kraggerud SM, Abeler VM, et al. Genome profiles of bilateral dysgerminomas, a unilateral gonadoblastoma, and a metastasis from a 46, XY phenotypic female. Hum Pathol. 2003;34:946-9.

    Google Scholar 

  40. Fleming A, Vilain E. The endless quest for sex determination genes. Clin Genet. 2005;67:15-25.

    Google Scholar 

  41. Achermann JC, Meeks JJ, Jameson JL. Phenotypic spectrum of mutations in DAX-1 and SF-1. Mol Cell Endocrinol. 2001;185:17-25.

    Google Scholar 

  42. Ahmed SF, Hughes IA. The genetics of male undermasculinization. Clin Endocrinol (Oxf). 2002;56:1-18.

    Google Scholar 

  43. Hiort O, Holterhus PM. The molecular basis of male sexual differentiation. Eur J Endocrinol. 2000;142:101-10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cools.

Additional information

Mw. dr. M. Cools, afdeling Pediatrie, Universitair Ziekenhuis Gent. Dhr. prof. dr. L.H.J. Looijenga, afdeling Pathologie, Josephine Nefkens Instituut, Erasmus MC, Rotterdam. Dhr. dr. B.J. Otten, subafdeling Kinderendocrinologie, UMC St Radboud, Nijmegen. Mw. drs. K.P. Wolffenbuttel, afdeling Urologie, dhr. prof. dr. S.L.S. Drop, subafdeling Endocrinologie, Sophia Kinderziekenhuis, Erasmus MC, Rotterdam.

Correspondentieadres: Martine Cools, afdeling Pediatrie, Dienst Kinderendocrinologie, Universitair Ziekenhuis Gent, Gebouw 5K6, De Pintelaan 185, 9000 Gent, tel: 09-2404728

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cools, M., Looijenga, L.H.J., Otten, B.J. et al. Genetische basis, terminologie en het risico voor de ontwikkeling van kiemceltumoren bij stoornissen in de geslachtsontwikkeling. KIND 76, 92–104 (2008). https://doi.org/10.1007/BF03078187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03078187

Navigation