, Volume 12, Issue 2, pp 37–42 | Cite as

Lichamelijke activiteit, cognitie en dementie

Onderzoek naar interventies in verzorgingshuizen komt in beweging
  • Laura Eggermont
  • Erik Scherder


De vergrijzing van de populatie heeft geresulteerd in een grote toename van ouderen met dementie. De bestaande medicamenteuze therapieën voor dementie richten zich op de behandeling van symptomen en een zoektocht naar nieuwe behandelwijzen is volop gaande. Er is ook steeds meer aandacht voor activiteiten die het ontstaan en het verloop van dementie zouden kunnen vertragen. Eén zo'n vorm van activiteit die vooral de laatste paar jaar veel aandacht heeft gekregen, is lichamelijke activiteit.


  1. Adlard, P.A., Perreau, V.M., Pop, V. & Cotman, C.W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. The Journal of Neuroscience, 25, 4217–4221.Google Scholar
  2. American College of Sports Medicine Position Stand. (1998). The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine and Science in Sports and Exercise, 30, 975–991.Google Scholar
  3. Aronow, W.S. (2001). Exercise therapy for older persons with cardiovascular disease. The American journal of geriatric cardiology, 10, 245–249, quiz 250–252.Google Scholar
  4. Burns, A. & O’Brien, J. (2006). British Association for Psychopharmacology. Clinical practice with anti-dementia drugs: a consensus statement from British Association for Psychopharmacology. Journal of Psychopharmacology, 20, 732–755.Google Scholar
  5. Cahn-Weiner, D.A., Farias, S.T., Julian, L., Harvey, D.J., Kramer, J.H., Reed, B.R., et al. (2007). Cognitive and neuroimaging predictors of instrumental activities of daily living. Journal of the International Neuropsychological Society, 13, 747–757.Google Scholar
  6. Chen, Y.C., Lei, J.L., Chen, Q.S. & Wang, S.L. (1998). Effect of physical training on the age-related changes of acetylcholinesterase-positive fibers in the hippocampal formation and parietal cortex in the C57BL/6J mouse. Mechanisms of Ageing and Development, 102, 81–93.Google Scholar
  7. Churchill, J.D., Galvez, R., Colcombe, S., Swain, R.A., Kramer, A.F. & Greenough, W.T. (2002). Exercise, experience and the aging brain. Neurobiology of Aging, 23, 941–955.Google Scholar
  8. Colcombe, S. & Kramer, A.F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Sciences, 14, 125–130.Google Scholar
  9. Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., Prakash, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61, 1166–1170.Google Scholar
  10. Cotman, C.W. & Berchtold, N.C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25, 295–301.Google Scholar
  11. Cott, C.A., Dawson, P., Sidani, S. & Wells, D. (2002). The effects of a walking/talking program on communication, ambulation, and functional status in residents with Alzheimer disease. Alzheimer Disease and Associated Disorders, 16, 81–87.Google Scholar
  12. Ding, Y., Li, J., Luan, X., Ding, Y.H., Lai, Q., Rafols, J.A., et al. (2004). Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience, 124, 583–591.Google Scholar
  13. Eggermont, L., Swaab, D., Hol, E. & Scherder, E. (in voorbereiding, a). Walking the line. A randomized controlled trial on the effects of walking on cognition in nursing home residents with moderate dementia.Google Scholar
  14. Eggermont, L., Swaab, D., Knol, D. & Scherder, E. (in voorbereiding, b). Do hand motor-activity, cognition, mood and the rest-activity rhythm go hand-in-hand? A clustered randomized trial in nursing home residents with dementia.Google Scholar
  15. Eggermont, L.H., van Heuvelen, M.J., van Keeken, B.L., Hollander, A.P. & Scherder, E.J. (2006a). Walking with a rollator and the level of physical intensity in adults 75 years of age or older. Archives of Physical Medicine and Rehabilitation, 87, 733–736.Google Scholar
  16. Eggermont, L., Swaab, D., Luiten, P. & Scherder, E. (2006b). Exercise, cognition and Alzheimer's disease: more is not necessarily better. Neuroscience and Biobehavioral Reviews, 30, 562–575.Google Scholar
  17. Everly, M.J., Heaton, P.C. & Cluxton, R.J. Jr. (2004). Beta-blocker underuse in secondary prevention of myocardial infarction. The Annals of Pharmacotherapy, 38, 286–293.Google Scholar
  18. Faes, M., van Iersel, M. & Olde Rikkert, M. (2007). Methodological issues in geriatric research. The Journal of Nutrition, Health & Aging, 11, 254–259.Google Scholar
  19. Fratiglioni, L., Paillard-Borg, S. & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurology, 3, 343–353.Google Scholar
  20. Friedman, R. & Tappen, R.M. (1991). The effect of planned walking on communication in Alzheimer's disease. Journal of the American Geriatrics Society, 39, 650–654.Google Scholar
  21. Hennigan, A., O’Callaghan, R.M. & Kelly, A.M. (2007). Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochemical Society Transactions, 35, 424–427.Google Scholar
  22. Iacoboni, M & Mazziotta, J.C. (2007). Mirror neuron system: basic findings and clinical applications. Annals of Neurology, 62, 213–218.Google Scholar
  23. Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature Reviews. Neuroscience, 5, 347–360.Google Scholar
  24. Immink, R.V., van den Born, B.J., van Montfrans, G.A., Koopmans, R.P., Karemaker, J.M. & van Lieshout, J.J. (2004). Impaired cerebral autoregulation in patients with malignant hypertension. Circulation, 110, 2241–2245.Google Scholar
  25. Kramer, A.F., Hahn, S., Cohen, N.J., Banich, M.T., McAuley, E., Harrison, C.R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.Google Scholar
  26. Koike, A., Itoh, H., Oohara, R., Hoshimoto, M., Tajima, A., Aizawa, T., et al. (2004). Cerebral oxygenation during exercise in cardiac patients. Chest, 125, 182–190.Google Scholar
  27. Larson, E.B., Wang, L., Bowen, J.D., McCormick, W.C., Teri, L., Crane, P., et al. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Annals of Internal Medicine, 144, 73–81.Google Scholar
  28. Lazarov, O., Robinson, J., Tang, Y.P., Hairston, I.S., Korade-Mirnics, Z., Lee, V.M., et al. (2005). Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell, 120, 701–713.Google Scholar
  29. Nakajima, K., Uchida, S., Suzuki, A., Hotta, H. & Aikawa, Y. (2003). The effect of walking on regional blood flow and acetylcholine in the hippocampus in conscious rats. Autonomic Neuroscience, 103, 83–92.Google Scholar
  30. Neeper, S.A., Gómez-Pinilla, F., Choi, J. & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109.Google Scholar
  31. Parry, S.W., Steen, N., Baptist, M., Fiaschi, K.A., Parry, O. & Kenny, R.A. (2006). Cerebral autoregulation is impaired in cardioinhibitory carotid sinus syndrome. Heart, 92, 792–797.Google Scholar
  32. Querido, J.S. & Sheel, A.W. (2007). Regulation of cerebral blood flow during exercise. Sports Medicine, 37, 765–782.Google Scholar
  33. Rovio, S., Kareholt, I., Helkala, E.L., Viitanen, M., Winblad, B., Tuomilehto, J., et al. (2005). Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease. Lancet Neurology, 4, 705–711.Google Scholar
  34. Scherder, E., Eggermont, L., Swaab, D., van Heuvelen, M., Kamsma, Y., de Greef, M. et al. (2007). Gait in ageing and associated dementias; its relationship with cognition. Neuroscience and Biobehavioral Reviews, 31, 485–497.Google Scholar
  35. Scherder, E.J., van Paasschen, J., Deijen, J.B., van der Knokke, S., Orlebeke, J.F., Burgers, I., et al. (2005). Physical activity and executive functions in the elderly with mild cognitive impairment. Aging & Mental Health, 9, 272–280.Google Scholar
  36. Swain, R.A., Harris, A.B., Wiener, E.C., Dutka, M.V., Morris, H.D., Theien, B.E., et al. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117, 1037–1046.Google Scholar
  37. Van Praag, H., Kempermann, G. & Gage, F.H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270.Google Scholar
  38. Witte, K.K. & Clark, A.L. (2007). Why does chronic heart failure cause breathlessness and fatigue? Progress in Cardiovascular Diseases, 49, 366–384.Google Scholar

Copyright information

© Bohn Stafleu van Loghum 2008

Authors and Affiliations

  1. 1.

Personalised recommendations