Skip to main content
Log in

Osteoporose op de kinderleeftijd

  • Artikelen
  • Published:
Tijdschrift voor kindergeneeskunde

Summary

Osteoporosis is characterised by reduced bone density, deterioration of the micro-architecture of bone, and increased fracture risk. Bone density in later life largely depends on peak bone mass achieved in young adulthood. A reduced bone density is associated with increased fracture risk in adults as well as in children. Idiopathic juvenile osteoporosis and osteogenesis imperfecta are examples of primary osteoporosis. In childhood, however, osteoporosis is more frequently a complication of a chronic disease or its treatment. Prevention and treatment of osteoporosis with for example calcium and vitamin D supplementation, bisphosphonates, growth hormone and the effects of training programs need further evaluation.

Samenvatting

Osteoporose wordt gekenmerkt door verminderde botdichtheid, een verslechtering van de microarchitectuur van het bot en een verhoogd fractuurrisico. De botdichtheid op oudere leeftijd wordt onder andere bepaald door de piekbotmassa die wordt bereikt op jongvolwassen leeftijd. Een verminderde botdichtheid is geassocieerd met een verhoogd fractuurrisico bij volwassenen en kinderen. Idiopathische juveniele osteoporose en osteogenesis imperfecta zijn voorbeelden van primaire osteoporose. Op de kinderleeftijd is osteoporose echter vaker het gevolg van een chronische ziekte of de behandeling van die ziekte. Preventie en behandeling van osteoporose met bijvoorbeeld calcium en vitamine-D-suppletie, bisfosfonaten, groeihormoon en de effecten van trainingsprogramma's behoeven nadere evaluatie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

literatuur

  • Cummings SR, Black DM, Nevitt MN, et al. Bone density at various sites for prediction of hip fractures. Lancet 1993; 341:72-5.

    Article  CAS  PubMed  Google Scholar 

  • Goulding A, Jones IE, Taylor RW, et al. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 2000;15:2011-8.

    Article  CAS  PubMed  Google Scholar 

  • Cooper GS, Umbach DM. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res 1996;11(12):1841-9.

    Article  CAS  PubMed  Google Scholar 

  • Gong G, Stern HS, Cheng SC, et al. The association of bone mineral density with vitamin D receptor gene polymorphisms. Osteoporos Int 1999;9(1):55-64.

    Article  CAS  PubMed  Google Scholar 

  • Mann V, Hobson EE, Li B, et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 2001;107(7):899-907.

    Article  CAS  PubMed  Google Scholar 

  • Sluis IM van der. Children's bone health [thesis]. Rotterdam: Erasmus MC; 2002.

    Google Scholar 

  • Sluis IM van der, Muinck Keizer-Schrama S de, Pols HAP, et al. Collagen IA1 polymorphism is associated with bone characteristics in Caucasian children and young adults. Calcif Tissue Int 2002;71:393-9.

    Article  PubMed  CAS  Google Scholar 

  • Boot AM, Ridder MAJ de, Pols HAP, et al. Bone mineral density in children and adolescents: Relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab 1997;82:57-62.

    Article  CAS  PubMed  Google Scholar 

  • Sluis IM van der, Ridder MAJ de, Boot AM, et al. Reference data for bone density and body composition measured with dual energy X ray absorptiometry in white children and young adults. Arch Dis Child 2002:87:341-7.

    Article  PubMed  Google Scholar 

  • Coeverden SC van, Netelenbos JC, Roos JC, et al. Reference values for bone mass in Dutch white pubertal children and their relation to pubertal maturation characteristics. Ned Tijdschr Geneeskd 2001;145(38):1851-6.

    PubMed  Google Scholar 

  • Kröger HPJ, Vainio P, Nieminen J, et al. Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone 1995;17:157-9.

    Article  PubMed  Google Scholar 

  • Sluis IM van der, Hop WC, Leeuwen JP van, et al. A cross-sectional study on biochemical parameters of bone turnover and vitamin d metabolites in healthy Dutch children and young adults. Horm Res 2002;57(5-6):170-9.

    Article  PubMed  Google Scholar 

  • Norman ME. Juvenile osteoporosis. In: Favus MJ (ed.). Primer on the metabolic bone disease and disorders of mineral metabolism. 3rd ed. Philadelphia: Lippincott-Raven; 1996. p. 275-8.

    Google Scholar 

  • Glorieux FH, Rauch F, Plotkin H, et al. Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 2000;15:1650-8.

    Article  CAS  PubMed  Google Scholar 

  • Shaw NJ, Boivin CM, Crabtree NJ. Intravenous pamidronate in juvenile osteoporosis. Arch Dis Child 2000;83:143-5.

    Article  CAS  PubMed  Google Scholar 

  • Plotkin H, Rauch F, Bishop NJ, et al. Pamidronate treatment of severe osteogenesis imperfecta in children under 3 years of age. J Clin Endocrinol Metab 2000;85:1846-50.

    Article  CAS  PubMed  Google Scholar 

  • Sluis IM van der, Boot AM, Hop WC, et al. Long-term effects of growth hormone therapy on bone mineral density, body composition, and serum lipid levels in growth hormone deficient children: 6 years follow-up. Horm Res 2002;58:207-14.

    Article  PubMed  Google Scholar 

  • Lucidarme N, Ruiz JC, Czernichow P, et al. Reduced bone mineral density at diagnosis and bone mineral recovery during treatment in children with Graves’ disease. J Pediatr 2000; 137:56-62.

    Article  CAS  PubMed  Google Scholar 

  • Young N, Formica C, Szmukler G, et al. Bone density at weight-bearing and nonweight-bearing sites in ballet dansers: effects of exercise, hypogonadism, and body weight. J Clin Endocrinol Metab 1994;78:449-54.

    Article  CAS  PubMed  Google Scholar 

  • Grinspoon S, Miller K, Coyle C, et al. Severity of osteopenia in estrogen-deficient women with anorexia nervosa and hypothalamic amenorrhea. J Clin Endocrinol Metab 1999;84:2049-55.

    Article  CAS  PubMed  Google Scholar 

  • Bachrach LK, Katzman DK, Litt IF, et al. Recovery from osteopenia in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab 1991;72:602-6.

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JS, Neer RM, Biller BMK, et al. Osteopenia in men with a history of delayed puberty. N Engl J Med 1992;326:600-4.

    Article  CAS  PubMed  Google Scholar 

  • Bertelloni S, Baroncelli GI, Ferdeghini M, et al. Normal volumetric bone mineral density and bone turnover in young men with histories of constitutional delay of puberty. J Clin Endocrinol Metab 1998;83(12):4280-3.

    Article  CAS  PubMed  Google Scholar 

  • Infante D, Tormo R. Risk of inadequate bone mineralization in diseases involving long-term suppression of dairy products. J Pediatr Gastroenterol Nutr 2000;30:310-3.

    Article  CAS  PubMed  Google Scholar 

  • Bonjour JP, Schurch MA, Chevalley T, et al. Protein intake, IGF-1 and osteoporosis. Osteoporos Int 1997;7(suppl 3):S36-42.

    PubMed  Google Scholar 

  • Bianchi ML. Glucocorticoids and bone: Some general remarks and some special observations in pediatric patients. Calcif Tissue Int 2002;70:384-90.

    Article  CAS  PubMed  Google Scholar 

  • Sluis IM van der, Heuvel MM van den, Hahlen K, et al. Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia. J Pediatr 2002;141:204-10.

    Article  PubMed  Google Scholar 

  • Sluis IM van der, Heuvel-Eibrink MM van den, Hahlen K, et al. Bone mineral density, body composition, and height in long-term survivors of acute lymphoblastic leukemia in childhood. Med Pediatr Oncol 2000;35:415-20.

    Article  PubMed  Google Scholar 

  • Kwaliteitsinstituut van de Gezondheidszorg CBO. Osteoporose: Tweede Herziene Richtlijn. Utrecht: CBO; 2002.

  • Touati G, Prieur AM, Ruiz JC, et al. Beneficial effects of one-year growth hormone administration to children with juvenile chronic arthritis on chronic steroid therapy. I. Effects on growth velocity and composition. J Clin Endocrinol Metabol 1998;83:403-9.

    Article  CAS  Google Scholar 

  • Touati G, Ruiz JC, Porquet D, et al. Effects on bone metabolism of one year recombinant human growth hormone administration to children with juvenile chronic arthritis undergoing chronic steroid therapy. J Rheumatol 2000;27:1287-93.

    CAS  PubMed  Google Scholar 

  • Rooney M, Davies UM, Reeve J, et al. Bone mineral content and bone mineral metabolism: changes after growth hormone treatment in juvenile chronic arthritis. J Rheumatol 2000; 27:1073-81.

    CAS  PubMed  Google Scholar 

  • Lepore L, Pennesi M, Barbi E, et al. Treatment and prevention of osteoporosis in juvenile chronic arthritis with disodium clodronate. Clin Exp Rheumatol 1991;9(suppl 6):33-5.

    PubMed  Google Scholar 

  • Bianchi ML, Cimaz R, Bardare M, et al. Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Arthritis Rheum 2000;43:1960-6.

    Article  CAS  PubMed  Google Scholar 

  • Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001;344:1434-41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. van der Sluis.

Additional information

Dr. Inge M. van der Sluis, afdeling Kindergeneeskunde, subafdeling Endocrinologie, Erasmus MC/Sophia, Rotterdam.

Dr. Sabine M.P.F. de Muinck Keizer-Schrama, afdeling Kindergeneeskunde, subafdeling Endocrinologie, Erasmus MC/Sophia, Rotterdam.

Dr. I.M. van der Sluis, afdeling Kinderendocrinologie, Erasmus MC/Sophia, Postbus 2060, 3000 CB Rotterdam, tel: 010-4636111, fax: 010-4636811

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Sluis, I.M., de Muinck Keizer-Schrama, S.M.P.F. Osteoporose op de kinderleeftijd. KIND 71, 254–260 (2003). https://doi.org/10.1007/BF03061468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03061468

Navigation