Skip to main content
Log in

Neuroprotectieve behandelingsstrategieën na perinatale hypoxie-ischemie

  • Serie wetenschappelijk onderzoek
  • Published:
Tijdschrift voor kindergeneeskunde

Summary

Perinatal hypoxia-ischemia is an important cause of neonatal mortality and morbidity (encephalopathy and mental retardation). A substantial part of the perinatal hypoxic-ischemic-related brain damage occurs upon and after reperfusion and reoxygenation by production of excitotoxic neurotransmitters and free radicals, by excessive nitric oxide production, cytokines release and a decrease in the endogenous production of growth factors. The presence of a so-called therapeutic window between the moment of hypoxia-ischemia and the start of cell death provides the opportunity to intervene both therapeutically as well as non-therapeutically. This article provides general information about the mechanisms that lead to brain damage following perinatal hypoxia-ischemia. Potential therapeutical interventions following perinatal hypoxia-ischemia are discussed, categorized to their mode of action. Furthermore, some non-therapeutical interventions are discussed, such as hypothermia and hyperbaric oxygen therapy. Well designed combinations of neuroprotective agents with non-therapeutical interventions should be given consideration in the treatment of post hypoxic-ischemic reperfusion injury of the newborn brain.

Samenvatting

Perinatale hypoxie-ischemie is een belangrijke oorzaak van neonatale mortaliteit en morbiditeit (spasticiteit en mentale retardatie). Een groot deel van de hierbij opgelopen hersenschade ontstaat gedurende en na reperfusie en reoxygenatie door de productie van exciterende neurotransmitters en vrije radicalen door overmatige stikstofmonoxideproductie, het vrijkomen van cytokinen en een afname in de endogene groeifactorenproductie. Het bestaan van een kritische tussenfase tussen het moment van hypoxie-ischemie en het optreden van celdood creëert mogelijkheden om zowel medicamenteus als niet-medicamenteus te interveniëren. Dit artikel geeft informatie over de mechanismen die leiden tot hersenschade na perinatale hypoxie-ischemie. Vervolgens wordt beknopt ingegaan op mogelijke medicamenteuze interventiestrategieën om de post-hypoxisch-ischemische reperfusieschade aan de hersenen te voorkomen of te reduceren. Ten slotte worden enkele niet-medicamenteuze interventies besproken, te weten hypothermie en het gebruik van hyperbare zuurstoftherapie. Een combinatie van medicamenteuze en niet-medicamenteuze interventies is het meest veelbelovend om neuroprotectie te kunnen bewerkstelligen na perinatale hypoxie-ischemie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

literatuur

  • Levene MI, Gibson NA, Fenton AC, et al. The use of a calcium-channel blocker, nicardipine, for severely asphyxiated newborn infants. Dev Med Child Neurol 1990;32:567-74.

    CAS  PubMed  Google Scholar 

  • Levene M. Role of excitatory amino acid antagonists in the management of birth asphyxia. Biol Neonate 1992;62:248-51.

    Article  CAS  PubMed  Google Scholar 

  • Levene M, et al. Acute effects of two different doses of magnesium sulphate in infants with birth asphyxia. Arch Dis Child Fetal Neonatal Ed 1995;73:F174-F7.

    Article  CAS  PubMed  Google Scholar 

  • Groenendaal F, Rademaker CM, Toet MC, Vries LS de. Effects of magnesium sulphate on amplitude-integrated continuous EEG in asphyxiated term neonates. Acta Paediatr 2002;91:1073-7.

    Article  CAS  PubMed  Google Scholar 

  • Palmer C, Towfighi J, Roberts RL, Heitjan DF. Allopurinol administered after inducing hypoxia-ischemia reduces brain injury in 7-day-old rats. Pediatr Res 1993;33:405-11.

    CAS  PubMed  Google Scholar 

  • Shadid M, et al. The effect of antioxidative combination therapy on post hypoxic-ischemic perfusion, metabolism, and electrical activity of the newborn brain. Pediatr Res 1998; 44:119-24.

    Article  CAS  PubMed  Google Scholar 

  • Mink RB, Dutka AJ, Hallenbeck JM. Allopurinol pretreatment improves evoked response recovery following global cerebral ischemia in dogs. Stroke 1991;22:660-5.

    CAS  PubMed  Google Scholar 

  • Bel F van, et al. Effect of allopurinol on postasphyxial free radical formation, cerebral hemodynamics, and electrical brain activity. Pediatrics 1998;101:185-93.

    Article  PubMed  Google Scholar 

  • Veen S, et al. Allopurinol treatment following severe asphyxia: follow-up at 2 years of age. Pediatr Res 1999;45(4):1355.

    Google Scholar 

  • Boda D, Nemeth I, Hencz P, Denes K. Effect of allopurinol treatment in premature infants with idiopathic respiratory distress syndrome. Dev Pharmacol Ther 1984;7:357-67.

    CAS  PubMed  Google Scholar 

  • Clancy RR, et al. Allopurinol neurocardiac protection trial in infants undergoing heart surgery using deep hypothermic circulatory arrest. Pediatrics 2001;108:61-70.

    Article  CAS  PubMed  Google Scholar 

  • Palmer C, Roberts RL, Bero C. Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke 1994; 25:1039-45.

    CAS  PubMed  Google Scholar 

  • Hurn PD, Koehler RC, Blizzard KK, Traystman RJ. Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs. Stroke 1995;26:688-94.

    CAS  PubMed  Google Scholar 

  • DeLemos RA, et al. Toxic effects associated with the administration of deferoxamine in the premature baboon with hyaline membrane disease. Am J Dis Child 1990;144:915-9.

    CAS  PubMed  Google Scholar 

  • Peeters-Scholte C, et al. Neuroprotection by selective nitric oxide synthase inhibition at 24 hours after perinatal hypoxia-ischemia. Stroke 2002;33:2304-10.

    Article  CAS  PubMed  Google Scholar 

  • Tweel ER van den, Peeters-Scholte CM, Bel F van, et al. Inhibition of nNOS and iNOS following hypoxia-ischaemia improves long-term outcome but does not influence the inflammatory response in the neonatal rat brain. Dev Neurosci 2002; 24:389-95.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi Y, et al. Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminoguanidine. Eur J Pharmacol 1998;342:47-9.

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 1996;16:981-7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang RL, et al. Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology 1994;44:1747-51.

    CAS  PubMed  Google Scholar 

  • Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 2001;57:1428-34.

  • Hagberg H, et al. Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr Res 1996;40:603-9.

    Article  CAS  PubMed  Google Scholar 

  • Clemens JA, Stephenson DT, Smalstig EB, et al. Global ischemia activates nuclear factor-kappa B in forebrain neurons of rats. Stroke 1997;28:1073-80.

    CAS  PubMed  Google Scholar 

  • Graham SH, Chen J. Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 2001;21:99-109.

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 1998;101:1992-9.

    Article  CAS  PubMed  Google Scholar 

  • Clawson TF, et al. Hypoxia-ischemia-induced apoptotic cell death correlates with IGF-I mRNA decrease in neonatal rat brain. Biol Signals Recept 1999;8:281-93.

    Article  CAS  PubMed  Google Scholar 

  • Guan J, Williams C, Gunning M, et al. The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats. J Cereb Blood Flow Metab 1993;13:609-16.

    CAS  PubMed  Google Scholar 

  • Trafermin. CAB 2001, KCB 1, Fiblast. Drugs R D 1999;1:40-1.

  • Gunn AJ, Gunn TR, Gunning MI, et al. Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics 1998;102:1098-106.

    Article  CAS  PubMed  Google Scholar 

  • Thoresen M, et al. Twenty-four hours of mild hypothermia in unsedated newborn pigs starting after a severe global hypoxic-ischemic insult is not neuroprotective. Pediatr Res 2001; 50:405-11.

    Article  CAS  PubMed  Google Scholar 

  • Thoresen M. Cooling the asphyxiated brain – ready for clinical trials? Eur J Pediatr 1999;158(suppl 1):S5-S8.

    Article  PubMed  Google Scholar 

  • Gunn AJ, Gluckman PD, Gunn TR. Selective head cooling in newborn infants after perinatal asphyxia: a safety study. Pediatrics 1998;102:885-92.

    Article  CAS  PubMed  Google Scholar 

  • Debillon T, et al. Whole-body cooling after perinatal asphyxia: a pilot study in term neonates. Dev Med Child Neurol 2003;45:17-23.

    Article  PubMed  Google Scholar 

  • Thoresen M, Whitelaw A. Cardiovascular changes during mild therapeutic hypothermia and rewarming in infants with hypoxic-ischemic encephalopathy. Pediatrics 2000;106:92-9.

    Article  CAS  PubMed  Google Scholar 

  • Thoresen M, et al. Post-hypoxic hypothermia reduces cerebrocortical release of NO and excitotoxins. Neuroreport 1997; 20(8):3359-62.

    Article  Google Scholar 

  • Haltern C, Siekmann UP, Rump AF, Rossaint R. Hyperbaric oxygen therapy (HBO): current standing. Anasthesiol Intensivmed Notfallmed Schmerzther 2000;35:487-502.

    Article  CAS  PubMed  Google Scholar 

  • Kindwall EP. Hyperbaric oxygen. BMJ 1993;307:515-6.

    Article  CAS  PubMed  Google Scholar 

  • Yin W, Badr AE, Mychaskiw G, Zhang JH. Down regulation of COX-2 is involved in hyperbaric oxygen treatment in a rat transient focal cerebral ischemia model. Brain Res 2002; 926:165-71.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, et al. Hyperbaric oxygen therapy accelerates neurologic recovery after 15-minute complete global cerebral ischemia in dogs. Crit Care Med 1992;20:1588-94.

    Article  CAS  PubMed  Google Scholar 

  • Kapp JP. Neurological response to hyperbaric oxygen – a criterion for cerebral revascularization. Surg Neurol 1981;15:43-6.

    Article  CAS  PubMed  Google Scholar 

  • Cowan F, et al. Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 2003;361:736-42.

    Article  PubMed  Google Scholar 

  • Keyser J de, Sulter G, Luiten PG. Clinical trials with neuroprotective drugs in acute ischaemic stroke: are we doing the right thing? Trends Neurosci 1999;22:535-40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Peeters-Scholte.

Additional information

Mw.dr. Cacha Peeters-Scholte, afdeling Neonatologie, Wilhelmina Kinderziekenhuis, Universitair Medisch Centrum Utrecht.Correspondentieadres: Prof.dr. F. van Bel, afdeling Neonatologie, KE04.123.1, Wilhelmina Kinderziekenhuis, Universitair Medisch Centrum, Postbus 85090, 3508 AB Utrecht, tel: 030-2504545, fax: 030-2505320

Dr. Floris Groenendaal, afdeling Neonatologie, Wilhelmina Kinderziekenhuis, Universitair Medisch Centrum Utrecht.

Prof.dr. Frank van Bel, afdeling Neonatologie, Wilhelmina Kinderziekenhuis, Universitair Medisch Centrum Utrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peeters-Scholte, C., Groenendaal, F. & van Bel, F. Neuroprotectieve behandelingsstrategieën na perinatale hypoxie-ischemie. KIND 71, 98–103 (2003). https://doi.org/10.1007/BF03061437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03061437

Navigation