Skip to main content
Log in

Influence of cross-field configuration on the einstein relation in quantum wires of tetragonal semiconductors

  • Condensed Matter
  • Published:
Acta Physica Hungarica

Abstract

An attempt is made to study the Einstein relation for the diffusivity-mobility ratio of the electrons is quantum wires of tetragonal semiconductors in the presence of crossed electric and magnetic fields on the basis of a newly derived electron energy spectrum considering all types of anisotropies in the band parameters. It is found taking n-Cd3As2 as an example that the same ratio increases with electron concentration in an oscillatory way. Besides, it decreases with increasing thickness and the crystal field splitting influences significantly the ratio in the whole range of the variables considered. We have also suggested an experimental method of determining the Einstein relation in degenerate materials having arbitrary dispersion laws. The results for quantum wires of parabolic semiconductors have been also obtained from our generalized expressions in the absence of cross-field configuration under certain limiting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearson, A. C. Gossard and J. H. English, Appl. Phys. Letts.,49, 1275, 1986.

    Article  ADS  Google Scholar 

  2. J. M. Gaines, P. M. Petroff, H. Kroemer, R. J. Simes, R. S. Geels and J. H. English, J. Vac. Sci. Tech.,6B, 1378, 1988.

    ADS  Google Scholar 

  3. T. Fukui and H. Saito, Appl. Phys. Letts.,50, 824, 1987.

    Article  ADS  Google Scholar 

  4. H. Sakaki, Jap. J. Appl. Phys.,19, 94, 1980; P. M. Petroff, A. C. Gossard, R. A. Logan and W. Weigmann, Appl. Phys. Letts.41, 635, 1982.

    Article  Google Scholar 

  5. M. Isuchiya, J. M. Gaines, R. H. Yan, R. J. Simes, P. O. Holtz, L. A. Coldren and P. M. Petroff, Phys. Rev. Letts.,62, 466, 1989.

    Article  ADS  Google Scholar 

  6. H. Temkin, G. J. Dolan, M. B. Panish and S. N. G. Chu, Appl. Phys. Letts.,50, 413, 1988.

    Article  ADS  Google Scholar 

  7. Y. Arakawa and H. Sakaki, Appl. Phys. Letts.,40, 939, 1982.

    Article  ADS  Google Scholar 

  8. I. Swemune and L. A. Coldren, IEEE J. QE,24, 1178, 1988.

    Article  Google Scholar 

  9. M. Mondal, S. Banik and K. P. Ghatak, J. Low Temp. Phys.,74, 423, 1989.

    Article  ADS  Google Scholar 

  10. W. Zawadzki, Surf. Sci.,37, 218, 1973.

    Article  ADS  Google Scholar 

  11. J. C. Hansel and M. Peter, Phys. Rev.,114, 411, 1959.

    Article  ADS  Google Scholar 

  12. A. G. Aronov, Sov. Phys. Solid State,5, 402, 1963.

    Google Scholar 

  13. Q. H. F. Verlen and B. Lax, Phys. Rev. Letts.,12, 471, 1964.

    Article  ADS  Google Scholar 

  14. B. R. Nag, Electron Transport in Compound Semiconductors, Springer-Verlag, Berlin, Heidelberg, New York, 1980.

    Google Scholar 

  15. G. D. Boyd, E. Buchler and F. G. Storz, Appl. Phys. Letts.,18, 301, 1971.

    Article  ADS  Google Scholar 

  16. J. L. Shay, K. J. Backman, E. Buchler and J. H. Wernick, Appl. Phys. Letts.,23, 226, 1973.

    Article  ADS  Google Scholar 

  17. T. I. Kamin and R. S. Muller, Solid State Electronics,10, 423, 1967.

    Article  ADS  Google Scholar 

  18. G. D. Hatchell and A. E. Ruchli, IEEE Trans. Electron Devices,15, 437, 1968.

    Google Scholar 

  19. G. G. Emch, J. Math. Phys.,14, 1775, 1973.

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Kubo, J. Phys. Soc. Japan,12, 537, 1957.

    Google Scholar 

  21. H. Kroemer, IEEE Trans.ED25, 850, 1978.

    Google Scholar 

  22. M. Mondal and K. P. Ghatak, J. Phys. C (Solid State),20, 1671, 1987.

    Article  ADS  Google Scholar 

  23. K. G. Ghatak and M. Mondal, Thin Solid Films,148, 219, 1987.

    Article  ADS  Google Scholar 

  24. M. Mondal and K. P. Ghatak, Phys. Stat. Sol. (b),133, K67, 1986.

    Article  ADS  Google Scholar 

  25. P. N. Butcher, A. N. Chakravarti and S. Swaminathan, Phys. Stat. Sol. (a),25, K47, 1974.

    Article  ADS  Google Scholar 

  26. B. Mitra and K. P. Ghatak, Solid State Electronics,32, 810, 1989.

    Article  ADS  Google Scholar 

  27. M. Mondal and K. P. Ghatak, J. Mag. and Mag. Materials,26, 115, 1986.

    Article  ADS  Google Scholar 

  28. M. Mondal and K. P. Ghatak, Annalen der Physik,46, 502, 1989.

    Article  ADS  Google Scholar 

  29. B. Mitra and K. P. Ghatak, Phys. Stat. Sol. (b),164, K13, 1991.

    Article  ADS  Google Scholar 

  30. S. N. Biswas and K. P. Ghatak, Int. J. Electronics,70, 125, 1991.

    Article  Google Scholar 

  31. J. W. Rowe and J. L. Shay, Phys. Rev.,83, 451, 1971.

    Google Scholar 

  32. J. J. Hopfield, J. Phys. Chem. Solids,15, 97, 1960.

    Article  ADS  Google Scholar 

  33. A. Shilika, Surface Science,37, 703, 1973.

    Google Scholar 

  34. H. Kildal, Phys. Rev.,10, 5082, 1974.

    Article  ADS  Google Scholar 

  35. J. L. Shay and H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications, Pergamon Press, London, 1975.

    Google Scholar 

  36. S. I. Radaustan, E. A. Arushanov, E. A. Nateprov and G. P. Chuiko, Cadmium Arsenide and Phosphide, Nauka Press, USSR, 1986.

    Google Scholar 

  37. M. Mondal, N. Chattopadhyay and K. P. Ghatak, J. Low Temp. Phys.,66, 131, 1987.

    Article  ADS  Google Scholar 

  38. W. Zawadzki, Phys. Rev. Letts.,16, 1001, 1966.

    Article  ADS  Google Scholar 

  39. W. Zawadzki, in: Springer Series in Solid State Science, Vol. 53, 2D Systems, Heterostructures and Superlattices, G. G. Bauer, F. Kachar and H. Heinrich (eds), Springer, Berlin, 1984, p. 1.

    Google Scholar 

  40. V. A. Viltkoskii, D. S. Domanevskii, R. A. Kakanokov and V. V. Krasovaskii, Sov. Phys. Semicond.,13, 553, 1979.

    Google Scholar 

  41. A. N. Chakravarti and B. R. Nag, Phys. Stat. Sol. (a),22, K153, 1974.

    Article  ADS  Google Scholar 

  42. K. P. Ghatak and B. Mitra, Internat. J. Electronics,72, 541, 1992.

    Article  Google Scholar 

  43. K. P. Ghatak and A. Ghoshal, Phys. Stat. Sol. (b),170, K27, 1992.

    Article  ADS  Google Scholar 

  44. I. M. Tsidilkovskii, Band Structure of Semiconductors, Pergamon Press, Oxford, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghatak, K.P. Influence of cross-field configuration on the einstein relation in quantum wires of tetragonal semiconductors. Acta Physica Hungarica 72, 147–159 (1992). https://doi.org/10.1007/BF03054159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03054159

Keywords

Navigation