Skip to main content
Log in

Statistical characterization of non-WSSUS mobile radio channels

Über die statistische Beschreibung nichtstationärer Mobilfunkkanäle

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

In this paper, statistical characterizations of mobile radio channels that do not satisfy the assumption of wide-sense stationary uncorrelated scattering (WSSUS) are discussed, most importantly the local scattering function. The framework presented is particularly suited for doubly underspread non-WSSUS channels. Application examples and measurement results illustrate its practical usefulness.

Abstract

In diesem Artikel wird die statistische Beschreibung von Mobilfunkkanälen behandelt, welche nicht die Annahme schwach stationärer unkorrelierter Streuer erfüllen. Besondere Beachtung hierbei findet die lokale Streufunktion. Die vorgestellten Methoden, welche besonders für schwach dispersive und schwach korrelierte Kanäle geeignet sind, werden anhand von Anwendungsbeispielen und Messergebnissen veranschaulicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bello, P. A. (1963): Characterization of randomly time-variant linear channels. IEEE Trans. Comm. Syst. 11: 360–393.

    Article  Google Scholar 

  • Biglieri, E., Proakis, J., Shamai, S. (1998): Fading channels: information-theoretic and communications aspects. IEEE Trans. Inf. Theory 44: 2619–2692.

    Article  MathSciNet  MATH  Google Scholar 

  • Boche, H., Jorswieck, E. (2002): Analysis of diversity and multiplexing tradeoff for multi-antenna systems with covariance feedback. In: Proc. IEEE VTC-2002, Vol. 2, Sept. 2002: 864–868.

    Article  Google Scholar 

  • Bultitude, R. J. C., Brussaard, G., Herben, M. H. A. J., Willink, T. J. (2000): Radio channel modelling for terrestrial vehicular mobile applications. In: Proc. MIllenium Conf. Antennas and Propagation, Davos, Switzerland, April 2000.

  • Chow, S.-K., Venetsanopoulos, A. N. (1974): Optimal on-off signaling over linear time-varying stochastic channels. IEEE Trans. Inf. Theory 20: 602–609.

    Article  MATH  Google Scholar 

  • Correia, L. M. (ed.) (2001): Wireless flexible personalised communications. COST 259 Final Report. Chichester: Wiley.

    Google Scholar 

  • Dossi, L., Tartara, G., Tallone, F. (1996): Statistical analysis of measured impulse response functions of 2.0 GHz indoor radio channels. IEEE J. Sel. Areas Comm. 14: 405–410.

    Article  Google Scholar 

  • Gehring, A., Steinbauer, M., Gaspard, I., Grigat, M. (2001): Empirical channel stationarity in urban environments. In: Proc. EPMCC 2001, Vienna, Austria, Feb. 2001.

  • Herdin, M. (2004): Non-stationary indoor MIMO radio channels. PhD thesis, Vienna University of Technology.

  • Jachan, M., Matz, G., Hlawatsch, F. (2003): Time-frequency-autoregressive random processes: Modelling and fast parameter estimation. In: Proc. IEEE ICASSP-2003, Vol. 6, Hong Kong, April 2003: 125–128.

    Google Scholar 

  • Kattenbach, R. (1997): Considerations about the validity of WSSUS for indoor radio channels. COST 259 TD(97)070, Lisbon, Sept. 1997.

  • Kennedy, R. S. (1969): Fading dispersive communication channels. New York: Wiley.

    Google Scholar 

  • Kivinen, J., Zhao, X., Vainikainen, P. (2001): Empirical characterization of wideband indoor radio channel at 5.3 GHz. IEEE Trans. Antennas and Propagation 49: 1192–1203.

    Article  Google Scholar 

  • Matz, G. (2003a): Characterization of non-WSSUS fading dispersive channels. In: Proc. IEEE ICC-2003, Anchorage, AK (May 2003): 2480–2484.

  • Matz, G. (2003b): Doubly underspread non-WSSUS channels: analysis and estimation of channel statistics. In: Proc. IEEE SPAWC-03, Rome, Italy, June 2003.

  • Perez, V., Jimenez, J. (eds.) (1994): Final propagation model. RACE CoDiT deliverable R2020/TDE/PS/DS/P/040/b1.

  • Proakis, J. G. (1995): Digital communications, 3rd ed. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Sayeed, A. M., Aazhang, B. (1999): Joint multipath-Doppler diversity in mobile wireless communications. IEEE Trans. Comm. 47: 123–132.

    Article  Google Scholar 

  • Schafhuber, D., Matz, G. (2005): MMSE and adaptive prediction of time-varying channels for OFDM systems. IEEE Trans. Wireless Comm. 4.

  • Schafhuber, D., Matz, G., Hlawatsch, F. (2001): Simulation of wide-band mobile radio channels using subsampled ARMA models and multistage interpolation. In: Proc. 11th IEEE Workshop on Statistical Signal Processing, Singapore, Aug. 2001: 571–574.

  • Steinbauer, M. (2001): The radio propagation channel — a non-directional, directional, and double-directional point-of-view. PhD thesis, Vienna University of Technology.

  • Tsatsanis, M. K., Giannakis, G. B., Zhou, G. (1996): Estimation and equalization of fading channels with random coefficients. Signal Processing 53: 211–229.

    Article  MATH  Google Scholar 

  • Utschick, W., Viering, I., Hofstetter, H. (2002): Validity of spatial covariance matrices over time and frequency. In: Proc. IEEE GLOBECOM, Taipeh, Taiwan, Nov. 2002: 851–855.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Matz Ao. Univ.-Prof. Dipl.-Ing. Dr. techn..

Additional information

Dedicated to Univ.-Prof. Dr. Ernst Bonek, on the occasion of hsi retirement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matz, G. Statistical characterization of non-WSSUS mobile radio channels. Elektrotech. Inftech. 122, 80–84 (2005). https://doi.org/10.1007/BF03054040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03054040

Keywords

Schlüsselwörter

Navigation