Skip to main content
Log in

Computer-assisted image analysis in biological sciences

  • Published:
Proceedings / Indian Academy of Sciences

Abstract

Automated computer-controlled image analysis of digitized video images has developed into a versatile tool useful for many applications. Both on the macroscopic and microscopic scales counting, identification and tracking are facilitated by these techniques which allow a quantitative, fast and objective analysis. Though image analysis has not yet reached the capabilities of the human eye and brain, it helps in both routine analysis and research tasks. Future enhancements made possible by the availability of larger memories and higher processing speeds will enhance the realm of applications. Especially the use of pipeline processing and dedicated hardware for the routines of image manipulation, including averaging and Laplace filtering, will open new fields of use. The most difficult task to master will be the extraction of complex parameters necessary for object recognition in an image, which requires a high degree of built-in intelligence both on the hardware and software level. Another ambitious task to tackle is the analysis of image sequences in order to track several individuals in a population in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen R D 1985 New directions and refinements in video-enhanced microscopy applied to problems in cell motility; inAdvances in Microscopy (New York: Alan R Liss) pp 3–11

    Google Scholar 

  • Allen R D and Allen N S 1983 Video-enhanced microscopy with a computer frame memory;J. Microsc. 129 3–17

    PubMed  CAS  Google Scholar 

  • Amos L 1987 Movements made visible by microchip technology;Nature (London) 330 211–212

    Article  CAS  Google Scholar 

  • Baba S A and Mogami Y 1985 An approach to digital image analysis of bending shapes of eukaryotic flagella and cilia;Cell Motil. 5 475–489

    Article  Google Scholar 

  • Barrows G H, Sisken J E, Allegra J C and Grasch S D 1984 Measurement of fluorescence using digital integration of video images;J. Histochem. Cytochem. 7 741–746

    Google Scholar 

  • Batschelet E 1965 Statistical methods for the analysis of problems in animal orientation and certain biological rhythms; inAnimal orientation and navigation (eds) S R Galles, K Schmidt-Koenig, G J Jacobs and R F Belleville (Washington: NASA) pp 61–91

    Google Scholar 

  • Batschelet E 1981Circular statistics in biology (London: Academic Press)

    Google Scholar 

  • Beier K and Fahimi H D 1986 Application of automatic image analysis for morphometric studies of peroxisomes stained cytochemically for catalase. I. Electron-microscopic application;Cell Tissue Res. 246 635–640

    Article  PubMed  CAS  Google Scholar 

  • Berns G S and Berns M W 1982 Computer-based tracking of living cells;Exp. Cell Res. 142 103–109

    Article  PubMed  CAS  Google Scholar 

  • Blake A 1987 Real-time seeing machines?;Nature (London) 328 759–760

    Article  Google Scholar 

  • Boekema E J, Berden J A and van Heel M G 1986 Structure of mitochondrial F1-ATPase studied by electron microscopy and image processing;Biochim. Biophys. Acta 851 353–360

    Article  PubMed  CAS  Google Scholar 

  • Boyes E D, Muggridge B J and Goringe M J 1982 On-line image processing in high resolution electron microscopy;J. Microsc. 127 321–335

    Google Scholar 

  • Bryan S R, Woodward W S, Griffis D P and Linton R W 1985 A microcomputer based digital imaging system for ion microanalysis;J. Microsc. 138 15–28

    CAS  Google Scholar 

  • Burton J L, Law P and Bank H L 1986 Video analysis of chemotactic locomotion of stored human polymorphonuclear leukocytes;Cell Motil. Cytoskeleton 6 485–491

    Article  PubMed  CAS  Google Scholar 

  • Buskey E J and Swift E 1985 Behavioral responses of oceanic zooplankton to simulated bioluminescence;Biol. Bull. 168 263–275

    Article  Google Scholar 

  • Caldwell D E 1985 New developments in computer-enhanced microscopy (CEM);J. Microbiol. Meth. 4 117–125

    Article  Google Scholar 

  • Cannon G C 1987 Sequence analysis on microcomputers;Science 238 97–103

    Article  PubMed  CAS  Google Scholar 

  • Castillo X, Yorkgitis D and Preston K Jr 1982 A study of multidimensional multicolor images;IEEE Trans. Biomed. Eng. 29 111–120

    Article  PubMed  CAS  Google Scholar 

  • Chegini N, Hilder V A, Gregory S P and MacLean N 1981 Structural transitions of chromatin in isolatedXenopus erythrocyte nuclei. II. Computer-based image analysis;J. Submicrosc. Cytol. 13 309–319

    PubMed  CAS  Google Scholar 

  • Coates T D, Harman J T and McGuire W A 1985 A microcomputer-based program for video analysis of chemotaxis under agarose;Comput. Methods Prog. Biomed. 21 195–202

    Article  CAS  Google Scholar 

  • Conner J A 1986 Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells;Proc. Natl. Acad. Sci. USA 83 6179–6183

    Article  Google Scholar 

  • Crowther R A and Klug A 1975 Structural analysis of macromolecular assemblies by image reconstruction from electron micrographs;Annu. Rev. Biochem. 44 161–182

    Article  PubMed  CAS  Google Scholar 

  • Danielsson P-E and Kruse B 1980 PICAP II—A second generation picture processing system;Mikroskopie Suppl. 37 425–430

    Google Scholar 

  • Davenport D 1973 Studies in microorganismal behavior by computerized television; inBehaviour of microorganisms (ed.) A Perez-Miravete (New York: Plenum Press) pp 106–116

    Google Scholar 

  • Davenport D, Culler G J, Greaves J O B, Forward R B and Hand W G 1970 The investigation of the behavior of microorganisms by computerized television;IEEE Trans. Biomed. Eng. 17 230–237

    Article  PubMed  CAS  Google Scholar 

  • De Paz P, Barrio J P and Renau-Piqueras J 1986 A basic program for determination of numerical density of cytoplasmic compartments-II. Analysis of ellipsoids and cylindrical particles;Comput. Biol. Med. 16 273–277

    Article  PubMed  Google Scholar 

  • Desai V and Reimer L 1985 Digital image recording and processing using an Apple II microcomputer;Scanning 7 185–197

    CAS  Google Scholar 

  • Dorset D L, Engel A, Massalski A and Rosenbusch J P 1984 Three dimensional structure of a membrane pore. Electron microscopical analysis ofEscherischia coli outer membrane matrix porin;Biophys. J. 45 128–129

    Article  PubMed  CAS  Google Scholar 

  • Doughty M J and Diehn B 1984 Anion sensitivity of motility and step-down photophobic responses ofEuglena gracilis, Arch Microbiol. 138 329–332

    Article  CAS  Google Scholar 

  • Dow J A T, Lackie J M and Crocket K V 1987 A simple microcomputer-based system for real-time analysis of cell behaviour;J. Cell Sci. 87 171–182

    PubMed  Google Scholar 

  • Dowideit G R, Newman D G and Young C M 1983 A new automated approach to high-density facial measurement. 1. The image capturing and processing hardware;Int. J. Bio-Med. Comput. 14 403–409

    Article  CAS  Google Scholar 

  • Dunsenbery D B 1985a Video camera-computer tracking of nematodeCaenorhabditis elegans to record behavioral responses;J. Chem. Ecol. 11 1239–1247

    Article  Google Scholar 

  • Dunsenbery D B 1985b Using a microcomputer and videocamera to simultaneously track 25 animals;Comput. Biol. Med. 15 169–175

    Article  Google Scholar 

  • Eichler H, Purz H J and Philipp B 1985 Digitale Bildverarbeitung und Bildauswertung mikroskopischer Aufnahmen mit stark schwankender Untergrundintensität. II. Ermittlung von Strukturparametern und Anwendung der Methode zur Auswertung elektronenmikroskopischer Aufnahmen von Cellulose-acetatmembranen;Mikroskopie 42 183–195

    Google Scholar 

  • Elder J K, Green D K and Southern E M 1986 Automatic reading of DNA sequencing gel autoradiographs using a large format digital scanner;Nucleic Acids Res. 14 417–424

    Article  PubMed  CAS  Google Scholar 

  • Erhardt R, Reinhardt E R, Schlipf W and Bloss W H 1980 FAZYTAN A system for fast automated cell segmentation, cell image analysis and feature extraction based on TV-image pickup and parallel processing;Anal. Quant. Cytol. J. 2 25–40

    CAS  Google Scholar 

  • Ford-Holevinski T S, Agranoff B W and Radin N S 1983 an inexpensive, microcomputer-based, video densitometer for quantitating thin-layer chromatograhic spots;Analyt. Biochem. 132 132–136

    Article  PubMed  CAS  Google Scholar 

  • Gamow R I, Geer G A and Bottger B 1986Phycomyces: fine structure analysis of the growing zone;Plant Physiol. 80 721–726

    Article  PubMed  CAS  Google Scholar 

  • Geerts H, DeBrabander M, Nuydens R, Geuens S, Moeremans M, DeMey J and Hollenbeck P 1987 Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy;Biophys. J. 52 775–782

    Article  PubMed  CAS  Google Scholar 

  • Glazzard A N, Hirons M R, Mellor J S and Holwill M E J 1983 The computer assisted analysis of television images as applied to the study of cell motility;J. Submicrosc. Cytol. 15 305–308

    Google Scholar 

  • Gogol E P, Lücken U and Capaldi R A 1987 The stalk connecting the F1 and F0 domains of ATP synthase visualized by electron microscopy of unstained specimens;FEBS Lett. 219 274–278

    Article  PubMed  CAS  Google Scholar 

  • Gordon D C, MacDonald I R, Hart J W and Berg A 1984 Image analysis of geo-induced inhibition, compression and promotion of growth in an invertedHelianthus annuus L. seedling;Plant Physiol. 76 589–594

    Article  PubMed  CAS  Google Scholar 

  • Grant G and Reid A F 1981 An efficient algorithm for boundary tracing and feature extraction;Comput. Graph. Imag. Process 17 225–237

    Article  Google Scholar 

  • Gras H A 1984 ‘Hidden line’ algorithm for 3D-reconstruction from serial sections—An extension of the NEUREC program package for a microcomputer;Comput. Prog. Biomed. 18 217–226

    Article  CAS  Google Scholar 

  • Gravekamp C Koerten H K, Verwoerd N P, de Bruijn W C and Daems W T 1982 Automated image analysis applied to electron micrographs;Cell Biol. Int. Rep. 6 656

    Article  PubMed  CAS  Google Scholar 

  • Gray A J, Beecher D E and Olson M V 1984 Computer-based image analysis of one-dimensional electrophoretic gels used for the seperation of DNA restriction fragments;Nucleic Acids Res. 12 473–491

    Article  PubMed  CAS  Google Scholar 

  • Gronsky R 1988 Spectroscopic information from high resolution images;Ultramicroscopy 24 155–168

    Article  CAS  Google Scholar 

  • Gross D, Loew L M and Webb W W 1986 Optical imaging of cell membrane potential changes induced by applied electric fields;Biophys. J. 50 339–348

    Article  PubMed  CAS  Google Scholar 

  • Gualtieri P, Colombetti G and Lenci F 1985 Automatic analysis of the motion of microorganisms;J. Microsc. 139 57–62

    Google Scholar 

  • Gunzer U, Aus H M and Harms H 1987 Letter to the editor;J. Histochem. Cytochem. 35 705–706

    PubMed  CAS  Google Scholar 

  • Häder D-P 1979 Photomovement;Encycl. Plant Physiol. New Ser. 7 268–309

    Google Scholar 

  • Häder D-P 1981 Computer-based evaluation of phototactic orientation in microorganisms;EDV Med. Biol. 12 27–30

    Google Scholar 

  • Häder D-P 1985a Computer-aided studies of photoinduced behaviors; inSensory perception and transduction in aneural organisms (eds) G Colombetti, F Lenci and P-S Song (New York, London: Plenum Press) pp 75–91

    Google Scholar 

  • Häder D-P 1985b Photomovement inCyanophora paradoxa;Arch. Microbiol. 143 100–104

    Article  Google Scholar 

  • Häder D-P 1986 Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate,Euglena gracilis;Photochem. Photobiol. 44 651–656

    Article  Google Scholar 

  • Häder D-P 1987a Automatic area calculation by microcomputer-controlled video analysis;EDV Med. Biol. 18 33–36

    Google Scholar 

  • Häder D-P 1987b Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate,Euglena gracilis;Arch. Microbiol. 147 179–183

    Article  PubMed  Google Scholar 

  • Häder D-P and Burkart U 1982 Mathematical simulation of photophobic responses in blue-green algae;Math. Biosci. 58 1–17

    Article  Google Scholar 

  • Häder D-P, Colombetti G, Lenci F and Quaglia M 1981 Phototaxis in the flagellates,Euglena gracilis andOchromonas danica;Arch. Microbiol. 130 78–82

    Article  Google Scholar 

  • Häder D-P and Griebenow K 1987 Versatile digital image analysis by microcomputer to count microorganisms;EDV Med. Biol. 18 37–42

    Google Scholar 

  • Häder D-P and Griebenow K 1988 Orientation of the green flagellate,Euglena gracilis, in a vertical column of water;FEMS Microbiol. Ecol. 53 159–167

    Article  Google Scholar 

  • Häder D-P and Häder M 1988a Ultraviolet-B inhibition of motility in green and dark bleachedEuglena gracilis;Curr. Microbiol. 150 20–25

    Google Scholar 

  • Häder D-P and Häder M 1988b Inhibition of motility and phototaxis in the green flagellate,Euglena gracilis, by UV-B radiation;Arch. Microbiol. (in press)

  • Häder D-P and Lebert M 1985 Real time computer-controlled tracking of motile microorganisms;Photochem. Photobiol. 42 509–514

    Article  PubMed  Google Scholar 

  • Häder D-P, Lebert M and DiLena M R 1986 New evidence for the mechanism of phototactic orientation ofEuglena gracilis;Curr. Microbiol. 14 157–163

    Article  Google Scholar 

  • Häder D-P and Lipson E 1986 Fourier analysis of angular distributions for motile microorganisms;Photochem. Photobiol. 44 657–663

    Article  Google Scholar 

  • Häder D-P, Rhiel E and Wehrmeyer W 1987 Phototaxis in the marine flagellateCryptomonas maculata;J. Photochem. Photobiol. B1 115–122

    Article  Google Scholar 

  • Häder D-P, Rhiel E and Wehrmeyer W 1988 Ecological consequences of photomovement and photobleaching in the marine flagellateCryptomonas maculata;FEMS Microbiol. Ecol. 53 9–18

    Article  Google Scholar 

  • Häder D-P and Truß M 1987 High resolution scanning of absorbing and fluorescent electrophoresis gels using video image analysis,CABIOS 3 339–343

    PubMed  Google Scholar 

  • Häder D-P, Whitaker B D and Poff K L 1980 Responses to light by a nonphototactic mutant ofDictyostelium discoideum;Exp. Mycol. 4 382–385

    Article  Google Scholar 

  • Hainfeld J F, Wall J S and Desmond E J 1982 A small computer system for micrograph analysis;Ultramicroscopy 8 263–270

    Article  PubMed  CAS  Google Scholar 

  • Hall R W 1983 Image processing algorithms for eye movement monitoring;Comput. Biomed. Res. 16 563–579

    Article  PubMed  CAS  Google Scholar 

  • Harms H, Boseck Z, Aus H M and Lenz V 1981 Untersuchungen der Abtastbedingungen bei Zellbildern mit einem Mikroskop-TV-System;Microsc. Acta 85 69–82

    PubMed  CAS  Google Scholar 

  • Hawkes P W 1980 Digital image processing;Nature (London) 285 174–175

    Article  Google Scholar 

  • Hayakawa T, Kinoshita K, Miyaki S, Fujiwake H and Ohsuka S 1986 Ultra-low-light level camera for photon counting imaging;Photochem. Photobiol. 43 95–97

    Article  CAS  Google Scholar 

  • Herman B and Albertini D F 1984 A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation;J. Cell Biol. 98 565–576

    Article  PubMed  CAS  Google Scholar 

  • Holmquist J, Antonsson D, Bengtsson E, Danielsson P E, Eriksson O, Hedblom T, Martensson A, Nordin B, Olsson T and Stenkvist B 1981 TULIPS—The Uppsala-Linkoping image processing system;Anal. Quant. Cytol. 3 182–194

    PubMed  CAS  Google Scholar 

  • Inoue S 1981 Video image processing greatly enhances contrast, quality and speed in polarization-based microscopy;J. Cell Biol. 89 346–356

    Article  PubMed  CAS  Google Scholar 

  • Iwama Y and Eguchi M 1986 Quantitative evaluation of leukemic mitochondria with a computer-controlled image analyzer;Vichows Arch. 51 375–384

    Article  CAS  Google Scholar 

  • Jaffe M J, Wakefield A H, Telewski F, Gulley E and Biro R 1985 Computer-assisted image analysis of plant growth, thigmomorphogenesis and gravitropism;Plant Physiol. 77 722–730

    Article  PubMed  CAS  Google Scholar 

  • Jarvis I R 1981 Microdensitometry with image analyser video scanners;J. Microsc. 121 337–346

    PubMed  CAS  Google Scholar 

  • Jimenez J, Santisteban A, Carazo J M and Carrascosa J L 1986 Computer graphic display method for visualizing three-dimensional biological structures;Science 232 1113–1115

    Article  PubMed  CAS  Google Scholar 

  • Julez B and Harmon L D 1984 Noise and recognizability of coarse quantized images;Nature (London) 308 211–212

    Article  Google Scholar 

  • Katz D F, Davis R O, Delandmeter B A and Overstreet J W 1985 Real-time analysis of sperm motion using automatic video image digitization;Comput. Methods Prog. Biomed. 21 173–182

    Article  CAS  Google Scholar 

  • Kaufman A G, Nathwani B N and Preston K Jr 1987 Subclassification of follicular lymphomas by computerized microscopy;Human Pathol. 18 226–231

    Article  CAS  Google Scholar 

  • Kemnitz H-D and Hougardy H P 1980 Design of an interface for digital image storage;Mikroskopie 7 415–416

    Google Scholar 

  • Kessler J O 1985 Hydrodynamic focusing of motile algal cells;Nature (London) 313 218–220

    Article  Google Scholar 

  • Kessler J O 1986 The external dynamics of swimming microorganisms;Prog. Phycol. Res. 4 258–307

    Google Scholar 

  • Kim N H, Wysocki A B, Bovik A C and Diller K R 1987 A microcomputer-based vision system for area measurement;Comput. Biol. Med. 17 173–183

    Article  PubMed  CAS  Google Scholar 

  • Kincaid D T and Schneider R B 1983 Quantification of leaf shape with a microcomputer and Fourier transform;Can. J. Bot. 61 2333–2342

    Article  Google Scholar 

  • Kirkland E J 1982 A minicomputer system for image processing of electron micrographs;Ultramicroscopy 8 271–276

    Article  Google Scholar 

  • Kokubo Y and Hardy W H 1982 Digital image processing: a path to better pictures;Ultramicroscopy 8 277–286

    Article  PubMed  CAS  Google Scholar 

  • Koss L G, Sherman A B and Adams S E 1983 The use of hierarchic classification in the image analysis of a complex cell population. Experience with the sediment of voided urine;Anal. Quant. Cytol. 5 159–166

    PubMed  CAS  Google Scholar 

  • Kuntz I D and Crippen G M 1980 A computer model for the 30s ribosome subunit;Biophys. J. 32 677–696

    Article  PubMed  CAS  Google Scholar 

  • Lemkin P and Lipkin L 1980 BMON2—a distributed monitor system for biological image processing;Comput. Prog. Biomed. 11 21–42

    Article  CAS  Google Scholar 

  • Lewandowska K, Doroszewski J, Haemmerli G and Struli P 1979 An attempt to analyze locomotion of leukemia cells by computer image processing;Comput. Biol. Med. 9 331–344

    Article  PubMed  CAS  Google Scholar 

  • Lin J A and Cowley J M 1986 Reconstruction from in-line electron holograms by digital processing;Ultramicroscopy 19 179–190

    Article  Google Scholar 

  • Lipson E D and Häder D-P 1984 Video data acquisition for movement responses in individual organisms;Photochem. Photobiol. 39 437–441

    Article  Google Scholar 

  • Mancini P, Benassi A, Valli G and Donato L 1978 Minimum computer system for videodensitometry and image analysis;Med. Biol. Eng. Comput. 16 542–548

    Article  Google Scholar 

  • Mardia K V 1972Statistics of directional data (London: Academic Press)

    Google Scholar 

  • Mayfield C I 1984 A simple computer-based video image analysis system and potential applications to microbiology;J. Microbiol. Meth. 3 61–67

    Article  Google Scholar 

  • McMillan P J, Yakush A, Frykman G, Nava P B and Ras V R 1987 Minima equalization: a useful strategy in automatic processing of microscopic images;J. Microsc. 148 253–262

    PubMed  CAS  Google Scholar 

  • Melkonian M, Meinicke-Liebelt M and Häder D-P 1986 Photokinesis and photophobic responses in the gliding flagellate,Euglena mutabilis;Plant Cell Physiol. 27 505–513

    CAS  Google Scholar 

  • Mikolajczyk E, Häder D-P and Nultsch W 1985 Photodynamically induced chemoresponses of the colorless flagellate,Astasia longa, in the presence of riboflavin;Arch. Microbiol. 142 397–402

    Article  CAS  Google Scholar 

  • Mikolajczyk E, Nultsch W and Häder D-P 1986 Chemoaccumulation of the colorless flagellate,Astasia longa in the presence of the photosensitizer methylene blue;Acta Protozool. 25 179–186

    CAS  Google Scholar 

  • Mineyuki Y, Yamada M, Takagi M, Wada M and Furuya M 1983 A digital image processing technique for the analysis of particle movements: Its application to organelle movements during mitosis inAdiantum protonemata;Plant Cell Physiol. 24 225–234

    Google Scholar 

  • Mori Y, Matsumoto K, Ueda T and Kobatake Y 1986 Spatio-temporal organization of intracellular ATP content and oscillation patterns in response to blue light byPhysarum polycephalum;Protoplasma 135 31–37

    Article  CAS  Google Scholar 

  • Mount D W and Conrad B 1986 Improved programs for DNA and protein sequence analysis on the IBM personal computer and other standard computer systems;Nucleic Acids Res. 14 443–454

    Article  PubMed  CAS  Google Scholar 

  • Neely J E, Townend W J and Combs J W 1984 A computerized microspectrophotometer using fibre optics for transmission and detection of light;J. Microsc. 133 313–322

    PubMed  CAS  Google Scholar 

  • Nierzwicki-Bauer S A, Balkwill D L and Stevens S E Jr 1983 Three-dimensional ultrastructure of a unicellular cyanobacterium;J. Cell Biol. 97 713–722

    Article  PubMed  CAS  Google Scholar 

  • Omasa K, Aiga I and Hashimoto Y 1982 Image instrumentation for evaluating the effects of air pollutants on plants;Acta Imeko 303–312

  • Omasa K and Aiga I 1987 Environmental measurement: image instrumentation for evaluating pollution effects on plants;System Control Encycl. 2 1516–1522

    Google Scholar 

  • Omasa K, Hashimoto Y and Aiga I 1981 A quantitative analysis of the relationships between SO2 or NO2 sorption and their acute effects on plant leaves using image instrumentation;Environ. Control Biol. 19 59–67

    CAS  Google Scholar 

  • Omasa K, Hashimoto Y and Aiga I 1983 Observation of stomatal movements of intact plants using an image instrumentation system with a light microscope;Plant Cell Physiol. 24 281–288

    Google Scholar 

  • Omasa K and Onoe M 1984 Measurement of stomatal aperture by digital image processing;Plant Cell Physiol. 25 1379–1388

    Google Scholar 

  • Omasa K, Onoe M and Yamada H 1985 NMR imaging for measuring root system and soil water content;Environ. Control Biol. 23 99–102

    Google Scholar 

  • Omasa K, Shimazaki K-I, Aiga I, Larcher W and Onoe M 1987 Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves;Plant Physiol. 84 748–752

    Article  PubMed  CAS  Google Scholar 

  • Omoto C K and Brokaw C J 1985 Bending patterns ofChlamydomonas flagella: II. Calcium effects on reactivatedChlamydomonas flagella;Cell Mot. 5 53–60

    Article  CAS  Google Scholar 

  • Poggio T 1984 Vision by man and machine;Sci. Am. 250 68–78

    Article  Google Scholar 

  • Preston K 1981 Tissue section analysis: feature selection and image processing;Pattern Recognition 13 17–36

    Article  Google Scholar 

  • Preston K Jr 1983 Gray level image processing by cellular logic transforms;IEEE Trans Pattern Anal. and Mach. Intelligence 5 55–58

    Article  Google Scholar 

  • Preston K Jr 1986 High-resolution image analysis;J. Histochem. Cytochem. 34 67–74

    PubMed  Google Scholar 

  • Preston K Jr and Dekker A 1980 Differentiation of cells in abnormal human liver tissue by computer image processing;Anal. Quant. Cytol. J. 2 1–14

    Google Scholar 

  • Preston K Jr, Fagan L M, Huang H K and Pryor T A 1984 Computing in medicine;IEEE Trans. Biomed. Eng. 294–313

  • Rees D D, Fogarty K E, Levy L-K and Fay F S 1985 Computerized analysis of TV images for ultrasensitive monitoring of the reaction of fluorochrome with protein;Analyt. Biochem. 144 461–468

    Article  PubMed  CAS  Google Scholar 

  • Rhiel E, Häder D-P and Wehrmeyer W 1988 Diaphototaxis and gravitaxis in a freshwater Cryptomonas;Plant Cell Physiol. (in press)

  • Rikmenspoel R and Isles C A 1985 Digitized precision measurements of the movement of sea urchin sperm flagella;Biophys. J. 47 395–410

    Article  PubMed  CAS  Google Scholar 

  • Rodenacker K, Gais P and Abmayr W 1980 Analysis of textures with DIBIVE. A system for digital picture processing;Mikroskopie 37 421–424

    Google Scholar 

  • Russ J C and Russ J C 1984 Image processing in a general purpose microcomputer;J. Microsc. 135 89–102

    Google Scholar 

  • Russ J C and Russ J C 1987 Automatic discrimination of features in grey-scale images;J. Microsc. 148 263

    Google Scholar 

  • Sanderson M J and Dirksen E R 1985 A versatile and quantitative computerassisted photoelectronic technique used for the analysis of ciliary beat cycles;Cell Mot. 5 267–292

    Article  CAS  Google Scholar 

  • Schellart N A M, Zweijpfenning R C J V, van Merle J and Huijsmans D P 1986 Computerized pattern recognition used for grain counting in high resolution autoradiographs with low grain densities;Comp. Methods Prog. Biomed. 23 103–109

    Article  CAS  Google Scholar 

  • Schimz A and Hildebrand E 1985 Response regulation and sensory control inHalobacterium halobium based on an oscillator;Nature (London) 317 641–643

    Article  Google Scholar 

  • Serra J 1980 Digitalization;Mikroskopie Suppl. 37 109–118

    Google Scholar 

  • Shaw P J, Garner R T and Parker E A 1981 A flat-bed scanning microdensitometer for computer image processing of electron micrographs;Micron 12 123–130

    Google Scholar 

  • Shipton H W 1979 The microprocessor, a new tool for the biosciences;Annu. Rev. Biophys. Bioeng. 8 269–286

    Article  PubMed  CAS  Google Scholar 

  • Skarnulis A J 1982 A computer system for on-line image capture and analysis;J. Microsc. 127 39–46

    Google Scholar 

  • Smith K C A 1982 On-line digital computer techniques in electron microscopy: general introduction;J. Microsc. 127 3–16

    CAS  Google Scholar 

  • Spragg S P, Jones M I and Hill B J 1983 An optical comparator for measuring two-dimensional polyacrylamide gel electrophoresis records using an on-line microcomputer;Anal. Biochem. 129 255–268

    Article  PubMed  CAS  Google Scholar 

  • Spring K R 1983 Application of video to light microscopy, inMembrane Biophysics II, physical methods in the study of Epithelia (New York: Alan R Liss) pp 15–20

    Google Scholar 

  • Spudich J 1985 Color-sensing by phototacticHalobacterium halobium; inSensory perception and transduction in aneural organisms (eds) G Colombetti, F Lenci and P-S Song (New York, London: Plenum Press) pp 113–118

    Google Scholar 

  • Squire J M, Luther P K and Agnew G D 1986 Averaging of periodic images using a microcomputer;J. Microsc. 142 289–300

    CAS  Google Scholar 

  • Steinbach T, Unland F and Müller K-M 1982 Kostengünstiges Mikroprozessorsystem zur Ergänzung eines Quantimet 720- Bildanalysegerätes;Microsc. Acta 86 139–145

    PubMed  CAS  Google Scholar 

  • Takahashi T and Kobatake Y 1982 Computer-linked automated method for measurement of the reversal frequency in phototaxis ofHalobacterium halobium;Cell Struct. Funct. 7 183–192

    Article  Google Scholar 

  • Tanasugarn L, McNeil P, Reynolds G T and Taylor D L 1984 Microspectrofluorometry by digital image processing: measurement of cytoplasmic pH;J. Cell Biol. 98 717–724

    Article  PubMed  CAS  Google Scholar 

  • Thurston G, Jaggi B and Palcic B 1986 Cell motility measurements with an automated microscope system;Exp. Cell Res. 165 380–390

    Article  PubMed  CAS  Google Scholar 

  • Turano T A, D’Arpa P, Clark W L and Williams J R 1985 A time-lapse, image digitization videomicroscope system based on a mini computer with large peripheral memory;Comput. Biol. Med. 15 177–185

    Article  PubMed  CAS  Google Scholar 

  • Tyson J J and Haralick R H 1986 Computer analysis of two-dimensional gels by a general image processing system,Electrophoresis 7 107–113

    Article  CAS  Google Scholar 

  • Wagenknecht T and De Rosier D 1981 Three-dimensional reconstruction of the flagellar hookfromCaulobacter crescentus;J. Membr. Biol. 151 439–465

    CAS  Google Scholar 

  • Wagner G 1984 Blue light effects in halobacteria; inBlue light effects in biological system, (.ed) H Senger (Berlin, Heidelberg, New York, Tokyo: Springer Verlag) pp. 48–54

    Google Scholar 

  • Walter R J and Berns M W 1981 Computer-enhanced video microscopy; digitally processed microscope images can be produced in real time;Proc. Natl. Acad. Sci. USA 78 6927–6931

    Article  PubMed  CAS  Google Scholar 

  • Webb W W and Gross D 1986 Patterns of individual molecular motions deduced from fluorescent image analysis; inApplications of fluorescence in the biomedical science (eds) D L Taylor, A S Waggoner, R F Murphy, F Lanni and R R Birge (New York: Alan R Liss) pp 405–422

    Google Scholar 

  • Weiss D G 1986 Visualization of the living cytoskeleton by video-enhanced microscopy and digital image processing;J. Cell Sci. Suppl. 5 1–15

    PubMed  CAS  Google Scholar 

  • Williams D A, Fogarty K E, Tsien R Y and Fay F S 1985 Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2;Nature (London) 318 558–561

    Article  CAS  Google Scholar 

  • Wittekind C and Schulte E 1987 Computerized morphometric image analysis of cytologic nuclear mapameters in breast cancer;Anal. Quant. Cytol. Histol. 9 480–484

    PubMed  CAS  Google Scholar 

  • Wollmer W 1987 Application of a small microcomputer to cell image analysis;Anal. Quant. Cytol. Histol. 9 535

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häder, DP. Computer-assisted image analysis in biological sciences. Proc. Indian Acad. Sci. 98, 227–249 (1988). https://doi.org/10.1007/BF03053794

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03053794

Keywords

Navigation