Skip to main content
Log in

Zelluntergang bei entzündlichen Herzmuskelerkrankungen — Apoptose oder Nekrose?

Myocyte destruction in inflammatory cardiomyopathy — apoptosis or necrosis?

  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Der Zelltod kann, auch bei entzündlichen Herzmuskelerkrankungen, durch zwei unterschiedliche Mechanismen hervorgerufen werden: durch Nekrose oder Apoptose. Während die Nekrose häufig durch unphysiologische Vorgänge, wie Hyperthermie oder Hypoxie, induziert wird, gehören apoptotische Vorgänge zur normalen Organentwicklung dazu. Morphologisch ist die Nekrose durch eine Zell- und Organellenschwellung mit Zusammenbruch der Zellmembran gekennzeichnet und häufig mit einer Entzündungsreaktion des umliegenden Gewebes verbunden. Wichtige morphologische und biochemische Kriterien (Abbildung 1, Tabelle 1) der Apoptose sind hingegen nach Kondensation des Chromatins die Bildung apoptotischer Körperchen bzw. membranumschlossener Vesikel nach Fragmentierung der DNA in oligonukleosome DNA-Fragmente definierter Größe. Die wichtigsten Nachweismethoden des Zelluntergangs (Tabelle 2), wie der TUNEL-Test (Abbildung 2) oder die Agarosegelelektrophorese der extrahierten DNA (Abbildung 3), beruhen auf diesen biochemischen Charakteristika, wobei eine sichere Unterscheidung apoptotischer bzw. nekrotischer Prozesse dennoch nicht immer möglich ist.

Tierexperimentelle Untersuchungen sowie Untersuchungen bei verschiedenen Erkrankungen des kardiovaskulären Systems haben zeigen können, daß Apoptose in Myozyten induziert werden kann. So führten Ischämie, Reperfusion und Myokardinfarkt auch zu Induktion von Apoptose in Kardiozyten, wobei die Zellzerstörungen hauptsächlich durch Nekrose versacht werden. Mehrere Autorengruppen (Tabelle 3) untersuchten Patienten mit dilatativer Kardiomypathie, arrhythmogener rechtsventrikulärer Kardiomyopathie und Patienten nach Myokardinfarkt, wobei Apoptoseindizes von 0,25 bis zu 35% nachgewiesen werden konnten. Andere Autoren konnten bei Patienten mit Atherosklerose und Herzinsuffizienz eine vermehrte Fas-Expression bzw. erhöhte Apoptoseindizes nachweisen.

Wir untersuchten Endomyokardbiopsien von Patienten mit dilatativer Kardiomyopathie mit entzündlichen Infiltraten (DCMi), dilatativer Kardiomyopathie (DCM) mit Nachweis von Adenovirusgenom (ADV) bzw. Zytomegalievirusgenom (CMV) sowie DCM zum Nachweis von Apoptose mittels TUNEL-Test. Der Anteil apoptotischer Kardiomyozyten lag bei Patienten mit inflammatorischer Kardiomyopathie im Mittel bei 1,03%, bei Patienten mit ADV-Nachweis bei 0,25%, wobei sowohl bei Patienten mit DCM und CMV-Nachweis als auch bei solchen ohne Virusgenomnachweis keine apoptotischen Kardiozyten nachgewiesen werden konnten.

Würden apoptotische Prozesse bei der Entstehung oder dem Fortgang von Herzinsuffizienz, Rhythmusstörungen und anderen kardialen Dysfunktionen eine wichtige Rolle spielen, stünden heute therapeutische Optionen zur Blockierung dieser Mechanismen zur Verfügung.

Abstract

Cell death can be induced by 2 different mechanisms: necrosis and apoptosis. Necrosis, on the one hand, is usually caused by unphysiological stress factors such as hyperthermia or hypoxia, apoptosis, on the other hand, is part of the normal organ development and controls for example immune responses. Morphologically, necrosis is characterized by swelling of cells and their organelles leading to the disruption of the cell membrane, which in turn causes an inflammatory reaction in the surrounding tissue. Morphological and biochemical criteria (Figure 1, Table 1) of apoptosis are the condensation of chromatin leading to the development of apoptotic bodies or membrane-enclosed vesicles containing oligonucleosomal DNA fragments.

Important diagnostic tools of cell death (Table 2), such as the TUNEL test (Figure 2) or gel electrophoresis of extracted DNA (Figure 3) are based on the above mentioned biochemical characteristics, but a reliable differentiation of apoptotic versus necrotic processes is not always possible.

Experimental studies in animals and studies in various diseases of the cardiovascular system were able to show that apoptosis in myocytes can be induced, an issue that has long been discussed controversially. Ischemia, reperfusion, and myocardial infarction were also shown to lead to apoptosis in cardiomyocytes, whereas cell destruction was caused mainly by necrosis. Several authors (Table 3) demonstrated apoptotic indices in cardiomyocytes of patients with dilatated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and patients with acute infarction from 0.25 to 35% by the use of the TUNEL test. Others were able to demonstrate an elevated expression of Fas-receptor in cells of atheroslerotic plaques in patients with atherosclerosis and high indices of apoptotic cardiomyocytes in patients with chronic heart failure.

We investigated endomyocardial biopsies of patients with inflammatory cardiomyopathy, DCM without inflammatory reaction but the presence of adenoviral or cytomegaloviral genome and idiopathic DCM using the TUNEL test. The percentage of apoptotic cardiomyocytes in biopsies of patients with DCMi was 1.03 and in biopsies of patients with adenoviral genome 0.25, whereas in all other groups no apoptosis was found.

If apoptosis plays a major role in myocardial diseases such as heart failure, arrhythmia and others, blocking this mechanism will have to be considered as a therapeutical strategy. Therefore, studies on the extent of apoptotic processes in diseased versus healthy cardiac tissue are of great importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Berke G. Debate: The mechanism of lymphocyte-mediated killing. Lymphocyte-triggered internal target disintegration. Immunol Today 1991;12:396–9, discussion 402.

    Article  PubMed  CAS  Google Scholar 

  2. Cai W, Devaux B, Schaper W, et al. The role of Fas/APO1 and apoptosis in the development of human atherosclerotic lesions. Atherosclerosis 1997;131:177–86.

    Article  PubMed  CAS  Google Scholar 

  3. Cheng W, Li B, Kajstura J. Stretch-induced programmed myocyte cell death. J Clin Invest 1996;96:2247–59.

    Article  Google Scholar 

  4. Cleveland JL, Ihle JN. Contenders in FasL/TNF death signalling. Cell 1995;81:479–82.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen JJ. Apoptosis. Immunol Today 1993;14:126–30.

    Article  PubMed  CAS  Google Scholar 

  6. Curnow SJ, Glennie MJ, Stevenson GT. The role of apoptosis in antibody-dependent cellular cytotoxicity. Cancer Immunol Immunother 1993;36:149–55.

    Article  PubMed  CAS  Google Scholar 

  7. Davies MJ. Apoptosis in cardiovascular disease. Heart 1997;77:498–501.

    Article  PubMed  CAS  Google Scholar 

  8. Fraser A, Evan G. A licence to kill. Cell 1996;85:781–4.

    Article  PubMed  CAS  Google Scholar 

  9. Freude B, Masters TN, Kostin S, et al. Cardiomyocyte apoptosis in acute and chronic conditions. Basic Res Cardiol 1998;93:85–9.

    Article  PubMed  CAS  Google Scholar 

  10. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation. J Cell Biol 1992;119:493–501.

    Article  PubMed  CAS  Google Scholar 

  11. James TN. Normal and abnormal consequences of apoptosis in the human heart: from postnatal morphogenesis to paroxysmal arrhythmias. Circulation 1994;90:556–73.

    PubMed  CAS  Google Scholar 

  12. Keilholz U, Dummer R, Welters H, et al. A modified cytotoxicity assay with high sensitivity. Scand J Clin Lab Invest 1990;50:879–84.

    Article  PubMed  CAS  Google Scholar 

  13. Kajstura J, Cheng W, Reiss K. Apoptotic and necrotic myocyte cell death are independent contributing variables of infarct size in rats. Lab Invest 1996;94:1621–8.

    Google Scholar 

  14. Krahenbuhl O, Tschopp J. Debate: the mechanism of lymphocyte-mediated killing. Perforin-induced pore formation. Immunol Today 1991;12:399–402, discussion 403.

    Article  PubMed  CAS  Google Scholar 

  15. MacLellan WR, Schneider M. Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 1997;81:137–44.

    PubMed  CAS  Google Scholar 

  16. Mallat Z, Tedgui A, Fontaliran F, et al. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 1996;336:1190–6.

    Article  Google Scholar 

  17. Meinl E, Fickenscher H, Thome M, et al. Anti-apoptotic strategies of lymphotropic viruses. Immunol Today 19;10:474–9.

  18. Nagata S, Goldstein P. The Fas death factor. Science 1995;267: 1449–56.

    Article  PubMed  CAS  Google Scholar 

  19. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;336:1182–9.

    Article  Google Scholar 

  20. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–41.

    Article  PubMed  CAS  Google Scholar 

  21. Oltvai ZN, Milliman CL, Korsmeyer SJ BCL-2 homodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993;74:609–19.

    Article  PubMed  CAS  Google Scholar 

  22. Prigent P, Blanpied C, Aten J, et al. A safe and rapid method for analyzing apoptosis-induced fragmentation of DNA extracted from tissues or cultured cells. J Immunol Methods 1993;160: 139–40.

    Article  PubMed  CAS  Google Scholar 

  23. Sanderson CJ. The mechanism of lymphocyte-mediated cytotoxicity. Biol Rev Camb Philos Soc 1981;56:153–97.

    Article  PubMed  CAS  Google Scholar 

  24. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human myocardial infarction. Circulation 1997;95:320–3.

    PubMed  CAS  Google Scholar 

  25. Savill JS, Wyllie AH, Henson JE, et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 1989;83:865–75.

    Article  PubMed  CAS  Google Scholar 

  26. Sedlak TW, Oltvai ZN, Yang E, et al. Multiple Bcl-2 family members demonstrate selective dimerization with Bax. Proc Natl Acad Sci USA 1995;92:7834–8.

    Article  PubMed  CAS  Google Scholar 

  27. Szabolcs M, Michler RE, Yang X, et al. Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase. Circulation 1996;94:1665–73.

    PubMed  CAS  Google Scholar 

  28. Teiger E, Than VD, Richard L. Apoptosis in pressure overloaded heart induced hypertrophy in the rat. J Clin Invest 1996;97:2891.

    Article  PubMed  CAS  Google Scholar 

  29. Van Furth R, Van Zwet TL. Immunocytochemical detection of 5-bromo-2-deoxyuridine incorporation in individual cells. J Immunol Methods 1988;108:45–51.

    Article  PubMed  Google Scholar 

  30. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284:555–6.

    Article  PubMed  CAS  Google Scholar 

  31. Yeh ETH. Life and death in the cardivascular system. Circulation 1997;95:782–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Pankuweit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankuweit, S., Jobmann, M., Crombach, M. et al. Zelluntergang bei entzündlichen Herzmuskelerkrankungen — Apoptose oder Nekrose?. Herz 24, 211–218 (1999). https://doi.org/10.1007/BF03044963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044963

Schlüsselwörter

Key Words

Navigation