Skip to main content
Log in

Apoptose—was ist das?

What is apoptosis? Relevance in coronary heart disease and infarction?

Bedeutung bei koronarer Herzkrankheit und Infarkt

  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Apoptose ist ein physiologisches, phylogenetisch hochkonserviertes Programm des regulierten Zellselbstmordes, charakterisiert durch Kernschrumpfung mit DNS-Fragmentierung, durch Phospholipidveränderungen in der Zellmembran und durch Zellschrumpfung. Von Zellmembran umgebene apoptotische Zellreste werden weitgehend ohne Entzündungsreaktion phagozytiert. Die Apoptose wird durch eine Kaskade hochspezifischer Caspasen bewerkstelligt, deren Aktivierung durch Komplexierung von Initiatorcaspasen in Signalkomplexen an den Rezeptoren der TNF-Familie und/oder an geschädigten Mitochondrien erfolgt. Bei vielen Formen des Zellstresses mit Schädigung der Kern-DNS und der Mitochondrien werden Mischformen des Zelluntergangs ausgelöst mit Aktivierung des regulierten Apoptoseprogramms, aber auch mit Elementen der unregulierten, katastrophenartigen Nekrose. Eine derartige Mischform des Myozytenuntergangs besteht auch bei Ischämie und Reperfusion des Myokards. In Experimenten können antiapoptotische Interventionen ischämische Myokardschäden zumindest verzögern, so daß derartige Interventionen als Strategie zur Erweiterung des zeitlichen Spielraums für die Reperfusion denkbar erscheinen. Zur Dauerprävention von myokardialen Ischämieschäden erscheint aber chronische Apoptosehemmung nicht als plausible Strategie wegen der dadurch gestörten Funktion des Immunsystems, wegen mutmaßlich ungünstiger Wirkungen auf arteriosklerotische Läsionen und wegen denkbarer Störungen bei der physiologischen Elimination beschädigter Mitochondrien.

Abstract

Apoptosis is a physiological, highly conserved program of cellular suicide, characterized by nuclear condensation with DNA-fragmentation, by alterations in the distribution of cell membrane phospholipids, and by cellular shrinkage. Apoptotic cellular remnants engulfed by cell membranes are phagocytized largely without activation of inflammatory reactions. The apoptotic program is executed by a cascade of highly specific caspases, activated by complexation of initiatorcaspases in cytosolic signalling complexes at receptors of the TNF family or at impaired mitochondria. In many forms of cellular stress with damage of nuclear DNA and mitochondria, mixed forms of cell death are triggered with regulated activation of the apoptotic program and, concomitantly, with induction of catastrophic necrosis. Such a mixed form of myocyte death is observed in myocardial ischemia and reperfusion. Antiapoptotic interventions can delay ischemic myocardial damage in experiments. Therefore, those interventions appear conceivable as future strategy for acutely enhancing the available time interval for therapeutic reperfusion. However, chronic inhibition of apoptosis for ongoing prevention of myocardial ischemic damage may not become a plausible strategy because of disturbances of the immune system, because of putatively infavorable effects on arteriosclerotic lesions and because of likely disturbances in the physiologic elimination of damaged mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Aderka D, Engelmann H, Maor Y, et al. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med 1992;175:323–9.

    Article  PubMed  CAS  Google Scholar 

  2. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 Protease nomenclature. Cell 1996;87:171.

    Article  PubMed  CAS  Google Scholar 

  3. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305–8.

    Article  PubMed  CAS  Google Scholar 

  4. Ballestar E, Abad C, Franco L. Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem 1996;271: 18817–24.

    Article  PubMed  CAS  Google Scholar 

  5. Baracos VE, DeVivo C, Hoyle DHR, et al. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol Endocrinol Metab 1995;268:E996–1006.

    CAS  Google Scholar 

  6. Bartling B, Holtz J, Darmer D. Contribution of myocyte apoptosis to myocardial infarction? Basic Res Cardiol 1998;93:71–84.

    Article  PubMed  CAS  Google Scholar 

  7. Berger NA. Cellular response to DNA damage: the role of poly (ADP-ribose) in the cellular response to DNA damage. Radiat Res 1985;101:4–15.

    Article  PubMed  CAS  Google Scholar 

  8. Best PJM, Hasdai D, Sangiorgi G, et al. Apoptosis: basic concepts and implications in coronary artery disease. Arterioscler Thromb Vasc Biol 1999;19:14–22.

    PubMed  CAS  Google Scholar 

  9. Beutler B, Milsark IW, Cerami A. Cachectin/tumor necrosis factor: production, distribution and metabolic fate in vivo. J Immunol 1985;135:3972–7.

    PubMed  CAS  Google Scholar 

  10. Bevers EM, Confurius P, Zwaal RF. Changes in membrane phospholipid distribution during platelet activation. Biochim Biophys Acta 1983;736:57–66.

    Article  PubMed  CAS  Google Scholar 

  11. Bigda J, Beletsky I, Brakebusch C, et al. Dual role of the p75 tumor necrosis factor (TNF) receptor in TNF cytotoxicity. J Exp Med 1994;180:445–60.

    Article  PubMed  CAS  Google Scholar 

  12. Bodmer JL, Burns K, Schneider P, et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas (APO-1/CD95). Immunity 1997;6:79–88.

    Article  PubMed  CAS  Google Scholar 

  13. Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c-release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. Embo J 1998;17:37–49.

    Article  PubMed  CAS  Google Scholar 

  14. Buja LM, Entman ML. Modes of myocardial cell injury and cell death in ischemic heart disease. Circulation 1998;98:1355–7.

    PubMed  CAS  Google Scholar 

  15. Burkart V, Wang ZQ, Radons J, et al. Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nature Med 1995;5:314–9.

    Google Scholar 

  16. Cai W, Devaux B, Schaper W, et al. The role of Fas/APO 1 and apoptosis in the development of human atherosclerotic lesions. Atherosclerosis 1997;131:177–86.

    Article  PubMed  CAS  Google Scholar 

  17. Cascino I, Papoff G, De Maria R, et al. Fas/Apo-1 (CD95) receptor lacking the intracytoplasmic signaling domain protects tumor cells from Fas-mediated apoptosis. J Immunol 1996;156:13–7.

    PubMed  CAS  Google Scholar 

  18. Cerretti DP, Kozlosky CJ, Mosley B, et al. Molecular cloning of the interleukin-1 bet converting enzyme. Science 1992;256:97–100.

    Article  PubMed  CAS  Google Scholar 

  19. Chancerelle Y, Mathieu J, Kergonou JF. Recognition and elimination of senescent erythrocytes: implications of antibodies specific for malonic dialdehyde-protein adducts, as demonstrated by flow cytometry. Biochem Mol Biol Int 1994;34:1259–70.

    PubMed  CAS  Google Scholar 

  20. Chicheportiche Y, Bourdon PR, Xu H, et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 1997;272:32401–10.

    Article  PubMed  CAS  Google Scholar 

  21. Chinnaiyan AM, et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 1996;274:990–2.

    Article  PubMed  CAS  Google Scholar 

  22. Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994;79:13–21.

    Article  PubMed  CAS  Google Scholar 

  23. Connor J, Pak CH, Schroit AJ. Exposure of phosphatidylserine in the outer leaflet of human red blood cells: relationship of cell density, cell age and clearance by mononuclear cells. J Biol Chem 1994;269:2239–404.

    Google Scholar 

  24. Crowe PD, Walter BN, Mohler KM, et al. A metalloprotease inhibitor blocks shedding of the 80-kD TNF receptor and TNF processing in T lymphocytes. J Exp Med 1995;181:1205–8.

    Article  PubMed  CAS  Google Scholar 

  25. De Groote D, Grau GE, Dehart I, et al. Stabilization of functional tumor necrosis factor-a by its soluble TNF receptors. Eur Cytokine Netw 1993;4:359–62.

    PubMed  Google Scholar 

  26. Degli-Esposti MA, Dougall WC, Smolak PJ, et al. The novel receptor TRAIL-R4 induces NF-kB and protects against TRAIL-mediated apotosis, yet retains an incoplete death domain. Immunity 1997;7:813–20.

    Article  PubMed  CAS  Google Scholar 

  27. Degli-Esposti MA, Smolak PJ, Walczak H, et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997;186:1165–70.

    Article  PubMed  CAS  Google Scholar 

  28. Devaux PF. Static and dynamic lipid asymmetry in cell membranes. Biochemistry 1991;30:1163–73.

    Article  PubMed  CAS  Google Scholar 

  29. Diaz C, Schroit AJ. Role of translocases in the generation of phosphatidyl asymmetry. J Membrane Biol 1996;151:1–9.

    Article  CAS  Google Scholar 

  30. Didenko VV, Hornby PJ. Presence of double-stranded breaks with single-base 3′ overhangs in cells undergoing apoptosis but not necrosis. J Cell Biol 1996;135:1369–76.

    Article  PubMed  CAS  Google Scholar 

  31. Eliasson MJL, Sampei K, Mandir AS, et al. Poly(ADP-ribose) polymerase gene disruption rendes mice resistant to cerebral ischemia. Nature Med 1997;3:1089–95.

    Article  PubMed  CAS  Google Scholar 

  32. Elsaesser A, Schlepper M, Kloevekorn WP, et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 1997;96:2920–31.

    Google Scholar 

  33. Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNAse that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998;391:43–50.

    Article  PubMed  CAS  Google Scholar 

  34. Engelmann H, Novick D, Wallach D. Two tumor necrosis factorbinding proteins purified from human urine: evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors. J Biol Chem 1990;1531–6.

  35. Fabisiak JP, Kagan VE, Ritov VB, et al. Bcl-2 inhibits selective oxidation and externalization of phosphatidylserine during paraquat-induced apoptosis. Am J Physiol 1997;272:C675–84.

    PubMed  CAS  Google Scholar 

  36. Fadok VA, Bratton DL, Konowal A, et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J Clin Invest 1998;101:890–8.

    Article  PubMed  CAS  Google Scholar 

  37. Fadok VA, Savill JS, Haslett C, et al. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol 1992;149:4029–35.

    PubMed  CAS  Google Scholar 

  38. Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell 1994;78:539–42.

    Article  PubMed  CAS  Google Scholar 

  39. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann Rev Biochem 1993;62:385–427.

    Article  PubMed  CAS  Google Scholar 

  40. Grimm LM, Goldberg AL, Poirier GG, et al. Proteasomes play an essential role in thymocyte apoptosis. Embo J 1996;15: 3835–44.

    PubMed  CAS  Google Scholar 

  41. Gross A, Yin XM, Wang K, et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis-R1/Fas death. J Biol Chem 1999;274:1156–63.

    Article  PubMed  CAS  Google Scholar 

  42. Hakem R, Hakem A, Duncan GS, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998;94: 339–52.

    Article  PubMed  CAS  Google Scholar 

  43. Han DKM, Chaudhary PM, Wright ME, et al. MRIT, a novel death-effector domain-containing protein, interacts with caspases and bcl-xL and initiates cell death. Proc Natl Acad Sci USA 1997;94:11333–8.

    Article  PubMed  CAS  Google Scholar 

  44. Han Z, Bhalla K, Pantazis P, et al. Cif (Cytochrome c efflux-inducing factor) activity is regulated by bcl-2 and caspase and correlates with the activation of Bid. Mol Cell Biol 1999;19:1381–9.

    PubMed  CAS  Google Scholar 

  45. Han Z, Li G, Bremner TA, et al. A cytosolic factor is required for mitochondrial cytochrome c efflux during apoptosis. Cell Death Diff 1998;5:469–79.

    Article  CAS  Google Scholar 

  46. Hengartner MO. CED-4 is a stranger no more. Nature 1997; 388:714–5.

    Article  PubMed  CAS  Google Scholar 

  47. Hershko A, Ciechanover A. The ubiquitin system for protein degradation. Ann Rev Biochem 1992;61:761–807.

    Article  PubMed  CAS  Google Scholar 

  48. Higgins CF. Flip-flop: the transmembrane translocation of lipids. Cell 1994;79:393–5.

    Article  PubMed  CAS  Google Scholar 

  49. Hirsch T, Marzo I, Kroemer G. Role of the mitochondrial permeability transition pore in apoptosis. Biosci Rep 1997;17: 67–76.

    Article  PubMed  CAS  Google Scholar 

  50. Hohmann HP, Remy R, Brockhaus M, et al. Two different cell types have different major receptors for human tumor necrosis factor (TNF alpha). J Biol Chem 1989;264:14927–34.

    PubMed  CAS  Google Scholar 

  51. Horvitz HR, Shaham S, Hengartner MO. The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harbor Symp Quant Biol 1994;59:354–77.

    Google Scholar 

  52. Hughes PE, Alexi T, Schreiber SS. A role for the tumour suppressor gene p53 in regulating neuronal apoptosis. Neuro Rep 1997;8:v-xii.

    CAS  Google Scholar 

  53. Itoh N, Yonehara S, Ishii A, et al. The polypeptide encoded by the cDNA for human surface antigen Fas can mediate apoptosis. Cell 1991;66:233–43.

    Article  PubMed  CAS  Google Scholar 

  54. Jiang Y, Woronicz JD, Goeddel DV. Prevention of constitutive TNF receptor signaling by silencer fo death domains. Science 1999;283:543–6.

    Article  PubMed  CAS  Google Scholar 

  55. Kaustura J, Cheng W, Reiss K, et al. Apoptotic and necrotic myocyte cell death are independent contributing variables of infaret size in rats. Lab Invest 1995;74:86–107.

    Google Scholar 

  56. Kerr JFR. Shrinkage necrosis: a distinct mode of cellular death. J Pathol 1971;105:13–20.

    Article  PubMed  CAS  Google Scholar 

  57. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239–57.

    PubMed  CAS  Google Scholar 

  58. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducting signaling complex (DISC) with the receptor. Embo J 1995;14:5579–88.

    PubMed  CAS  Google Scholar 

  59. Kitson J, Raven T, Jiang YP, et al. A death-domain-containing receptor that mediates apoptosis. Nature 1996;384:372–5.

    Article  PubMed  CAS  Google Scholar 

  60. Kluck RM, Bossy-Wetzel E, Green DR, et al. The release of cytochrome c from mitochondria: a primary site for bcl-2 regulation of apoptosis. Science 1997;275:1132–6.

    Article  PubMed  CAS  Google Scholar 

  61. Kluck RM, Martin SJ, Hoffman BM, et al. Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. Embo J 1997;16:4639–49.

    Article  PubMed  CAS  Google Scholar 

  62. Knepper-Nicolai B, Savill J, Brown SB. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J Biol Chem 1998; 273:30530–6.

    Article  PubMed  CAS  Google Scholar 

  63. Ko LJ, Prives C. P53: puzzle and paradigm. Genes Develop 1996;10:1054–72.

    Article  PubMed  CAS  Google Scholar 

  64. Koopman G, Reutelinsperger CP, Kuijten GA, et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cell undergoing apoptosis. Blood 1994:84.

  65. Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Ann Rev Physiol 1998;60:619–42.

    Article  CAS  Google Scholar 

  66. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 1997;18:44–51.

    Article  PubMed  CAS  Google Scholar 

  67. Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochrone c-mediated caspase activation in mice lacking caspase 9. Cell 1998;94:325–37.

    Article  PubMed  CAS  Google Scholar 

  68. Kuida K, Zheng TS, Na S, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996;384:368–72.

    Article  PubMed  CAS  Google Scholar 

  69. Liu C, Cheng J, Mountz JD. Differential expression of human Fas mRNA species upon peripheral blood mononuclear cell activation. Biochem J 1995;310:957–63.

    PubMed  CAS  Google Scholar 

  70. Liu X, Kim CN, Yang J, Jemmerson R, Wang X Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996;86:147–57.

    Article  PubMed  CAS  Google Scholar 

  71. Liu X, Zou H, Slaughter C, et al. DFF, a heterodimeric protein that functions downstream of caspase 3 to trigger DNA fragmentation during apoptosis. Cell 1997;89:175–84.

    Article  PubMed  CAS  Google Scholar 

  72. MacFarlane M, Ahmad M, Srinivasula SM, et al. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 1997;272:25417–20.

    Article  PubMed  CAS  Google Scholar 

  73. Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996;184:1155–60.

    Article  PubMed  CAS  Google Scholar 

  74. Marsters SA, Sheridan JP, Donahue CJ, et al. Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kB. Curr Biol 1996: 6:1669–76.

    Article  PubMed  CAS  Google Scholar 

  75. Marsters SA, Sheridan JP, Pitti RM, et al. Identification of a ligand for the death-domain-containing receptor apo3. Curr Biol 1998;8:525–8.

    Article  PubMed  CAS  Google Scholar 

  76. Marsters ST, Sheridan JP, Pitti RM, et al. A novel recepter for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997;7:1003–6.

    Article  PubMed  CAS  Google Scholar 

  77. Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts. Cell 1995;82:349–52.

    Article  PubMed  CAS  Google Scholar 

  78. Martin SJ, Reutelinsperger CP, Megahon AJ, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 1995;182:1545–56.

    Article  PubMed  CAS  Google Scholar 

  79. Marzo I, Brenner C, Zamzami N, et al. Bax and adenin nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 1998;281:2027–31.

    Article  PubMed  CAS  Google Scholar 

  80. Marzo I, Brenner C, Zamzami N, et al. The permeability pore complex: A target for apoptosis regulation by caspases and Bcl-2-related proteins. J Exp Med 1998;187:1261–71.

    Article  PubMed  CAS  Google Scholar 

  81. Marzo I, Susin SA, Petit PX, et al. Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 1998;427:198–202.

    Article  PubMed  CAS  Google Scholar 

  82. Medina R, Wing SS, Goldberg AL. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvati on and denervation athrophy. Biochem J 1995;307:631–7.

    PubMed  CAS  Google Scholar 

  83. Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system. Ann Rev Neurosci 1997;20:245–67.

    Article  PubMed  CAS  Google Scholar 

  84. Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med 1996;335:1897–905.

    Article  PubMed  CAS  Google Scholar 

  85. Mohler KM, Torrance DS, Smith CA, et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 1993;151:1548–61.

    PubMed  CAS  Google Scholar 

  86. Molketin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93:215–28.

    Article  Google Scholar 

  87. Molketin JD, Olson EN. GATA-4: a novel transcriptional regulator of cardiac hypertrophy? Circulation 1997;96:3833–5.

    Google Scholar 

  88. Mongkolsapaya J, Cowper AE, Xu XN, et al. Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. J Immunonol 1997;160:3–6.

    Google Scholar 

  89. Morinaga T, Nakagawa N, Yasuda T, et al. Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis-inhibitory factor. Eur J Biochem 1998;254:685–91.

    Article  PubMed  CAS  Google Scholar 

  90. Möröy T, Zoernig M. Regulators of life and death: the bcl-2 gene family. Cell Physiol Biochem 1996;6:312–36.

    Article  Google Scholar 

  91. Morrot G, Zachowski A, Devaux PF. Partial purification and characterization of the human erythrocyte Mg2+-ATPase: a candidate aminophospholipid translocase. FEBS Lett 1990;266: 29–32.

    Article  PubMed  CAS  Google Scholar 

  92. Muellberg J, Durie FH, Otten-Evans C, et al. A metalloprotease inhibitor blocks shedding of the IL-6 receptor and the p60 TNF receptor. J Immunol 1995;155:5198–205.

    Google Scholar 

  93. Nagy L, Thomazy V, Davies PJA. Transglutaminases: effector molecules in physiologic cell death. Cancer Bull 1994;46:136–40.

    Google Scholar 

  94. Nakamura N, Ban T, Yamaji K, et al. Localization of the apoptosis-inducing activity of lupus anticoagulant in an annexin V-binding antibody subset. J Clin Invest 1998;101:1951–9.

    Article  PubMed  CAS  Google Scholar 

  95. Nicotera P, Leist P. Energy supply and the shape of death in neurons and lymphoid cells. Cell Death Diff 1997;4:435–42.

    Article  CAS  Google Scholar 

  96. O’Brien IEW, Reutelinsperger CPM, Holdaway CM. The use of annexin-V and TUNEL to monitor the progression of apoptosis in plants. Cytometry 1997;29:28–33.

    Article  PubMed  Google Scholar 

  97. Oehm A, Behrmann I, Falk W, et al. Purification and molecular cloning of the APO-1 cell surface antigen, a new member of the TNF/NGF receptor superfamily: sequence identity with the Fas antigen. J Biol Chem 1992;267:10709–15.

    PubMed  CAS  Google Scholar 

  98. Oh H, Fujio Y, Kunisada K, et al. Activation of phosphatidylinositol 3-kinase through glycoprotein 130 induces protein kinase B and p70S6 kinase phosphorylation in cardiac myocytes. J Biol Chem 1998;273:9703–10.

    Article  PubMed  CAS  Google Scholar 

  99. Oh H, Kunasada K, Matsui H, et al. Phosphatidylinositol 3-kinase transduces survival and hypertrophic signals via Akt/MAP kinase and p70 S6 kinase pathways in cardiac myocytes. Circulation 1998;98:1–462.

    Google Scholar 

  100. Oh H, Kunisada K, Funamoto M, et al. Activation of gp 130 inhibits doxorubicin induced cell death by Bcl-xL/caspase 3 interaction and PI 3-kinase/Akt pathway in cardiac myocytes. Circulation 1998;98:1–462.

    Google Scholar 

  101. Orrenius S, Burgess DH, Hampton MB, et al. Mitochondria as the focus of apoptosis research. Cell Death Diff 1997;4:427–8.

    Article  CAS  Google Scholar 

  102. Orth K, Chinnaiyan AM, Garg M, et al. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 1996;271:16443–6.

    Article  PubMed  CAS  Google Scholar 

  103. Pan G, Bauer JH, Haridas V, et al. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 1998;431:351–6.

    Article  PubMed  CAS  Google Scholar 

  104. Pan G, Ni J, Wei YF, et al. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997; 277:815–8.

    Article  PubMed  CAS  Google Scholar 

  105. Pan G, Ni J, Yu GL, et al. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 1998;424:41–5.

    Article  PubMed  CAS  Google Scholar 

  106. Papoff G, Cascino I, Eramo A, et al. An N-terminal domain shared by Fas/Apo-1 (CD95) soluble variants prevents cell death in vitro. J Immunol 1996;156:4622–4630.

    PubMed  CAS  Google Scholar 

  107. Piacentini M. Tissue transglutaminase: a candidate effector element of physiological cell death. Curr Top Microbiol 1995;200:163–76.

    CAS  Google Scholar 

  108. Pitti RM, Marsters SA, Lawrence DA, et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998;396:699–703.

    Article  PubMed  CAS  Google Scholar 

  109. Piti RM, Marsters SA, Ruppert S, et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996;271:12687–90.

    Article  Google Scholar 

  110. Polyak K, Xia Y, Zweier JL, et al. A model for p53-induced apoptosis. Nature 1997;389:300–5.

    Article  PubMed  CAS  Google Scholar 

  111. Porter Ag, Ng P, Jänicke RU. Death substrates come alive. BioEssays 1997;19:501–7.

    Article  PubMed  CAS  Google Scholar 

  112. Raff MC. Social controls on cell survival and cell death. Nature 1992:356:397–400.

    Article  PubMed  CAS  Google Scholar 

  113. Rao L, Perez D, White E. Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 1996;135:1441–55.

    Article  PubMed  CAS  Google Scholar 

  114. Ray CA, Black RA, Kronheim SR, et al. Viral inhibitors of inflammation: cowpox virus encodes an inhibitor of the interleukin-1ß converting enzyme. Cell 1992;69:597–604.

    Article  PubMed  CAS  Google Scholar 

  115. Reutelinsperger CPM, Hornstra G, Hemker H. Isolation an partial purification of a novel anticoagulant from arteries of human umbilical cord. Eur J Biochem 1985;151:625–9.

    Article  Google Scholar 

  116. Sadoul R, Fernandez PA, Quiquerez AL, et al. Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. Embo J 1996;15:3845–52.

    PubMed  CAS  Google Scholar 

  117. Salvesen GS. Serpins and programmed cell death. New York: Plenum Press, 1997:177–83.

    Google Scholar 

  118. Schall TJ, Lewis M, Koller KJ, et al. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 1990;61:361–70.

    Article  PubMed  CAS  Google Scholar 

  119. Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 1995;373:81–3.

    Article  PubMed  CAS  Google Scholar 

  120. Schneider P, Bodmer JL, Thome M, et al. Characterization of two receptors for TRAIL. FEBS Lett 1997;416:329–34.

    Article  PubMed  CAS  Google Scholar 

  121. Schuchmann M, Hess S, Bufler P, et al. Functional discrepancies between tumor necrosis factor and lymphotoxin a explained by trimer stability and distinct receptor interactions. Eur J Immunol 1995;25:2183–9.

    Article  PubMed  CAS  Google Scholar 

  122. Schumann H, Heinrich H, Bartling B, et al. Apoptosis in the overloaded myocardium: potential stimuli and modifying signals. Basic Res Cardiol (in press).

  123. Screaton GR, Monkolsapaya J, Xu XN, et al. TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol 1997;7:693–6.

    Article  PubMed  CAS  Google Scholar 

  124. Screaton GR, Xu XN, Olsen AL, et al. LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci USA 1997;94: 4615–9.

    Article  PubMed  CAS  Google Scholar 

  125. Sedlak TW, Oltvai ZN, Yang E, et al. Multiple bcl-2 family members demonstrate selective dimerization with bax. Proc Natl Acad Sci USA 1995;92:7834–8.

    Article  PubMed  CAS  Google Scholar 

  126. Shall S. ADP-ribose in DNA repair: a new component of DNA excision repair. Adv Rad Biol 1984;11:1–69.

    CAS  Google Scholar 

  127. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277:818–21.

    Article  PubMed  CAS  Google Scholar 

  128. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309–19.

    Article  PubMed  CAS  Google Scholar 

  129. Skulachev PV. Uncoupling. New approaches to an old problem of bioenergetics. Biochim Biophys Acta 1998;1363.

  130. Smit JJM, Schinkel AH, Oude Elferink RPJ, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993;75:451–62.

    Article  PubMed  CAS  Google Scholar 

  131. Smith CA, Davis T, Anderson D, et al. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 1990;248:1019–23.

    Article  PubMed  CAS  Google Scholar 

  132. Solomon V, Lecker SH, Goldberg AL. The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle. J Biol Chem 1998;273:25216–22.

    Article  PubMed  CAS  Google Scholar 

  133. Song HY, Dunbar JD, Donner DB Aggregation of the intracellular domain of the type 1 tumor necrosis factor receptor defined by the two-hyprid system. J Biol Chem 1994;269:22492–5.

    PubMed  CAS  Google Scholar 

  134. Squier MK, Miller AC, Malkinson AM, et al. Calpain activation in apoptosis. J Cell Physiol 1994;159:229–37.

    Article  PubMed  CAS  Google Scholar 

  135. Squier MK, Sehnert AJ, Sellins KS, et al. Calpain and calpastatin regulate neutrophil apoptosis. J Cell Physiol 1999;178:311–9.

    Article  PubMed  CAS  Google Scholar 

  136. Steemans M, Goossens V, Van de Craen M, et al. A caspase-activated factor (CAF) induces mitochondrial membrane depolarization and cytochrome c release by a nonproteolytic mechanism. J Exp Med 1998;188:2193–8.

    Article  PubMed  CAS  Google Scholar 

  137. Stratton JR, Dewhurst TA, Kasina S, et al. Selective uptake of radiolabeled annexin V on acute porcine left atrial thrombi. Circulation 1995;92:3113–21.

    PubMed  CAS  Google Scholar 

  138. Stroh C, Schulze-Osthoff K. Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Diff 1998;5: 997–1000.

    Article  CAS  Google Scholar 

  139. Suda T, Takahashi T, Goldstein P, et al. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993;75:1169–78.

    Article  PubMed  CAS  Google Scholar 

  140. Susin SA, Lorenzo HK, Zamzami N, et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 1999;189:381–93.

    Article  PubMed  CAS  Google Scholar 

  141. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441–6.

    Article  PubMed  CAS  Google Scholar 

  142. Takahashi A, Alnemri ES, Lazebnik YA, et al. Cleavage of lamin A by Mch2a but not CPP32: multiple interleukin 1β-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc Natl Acad Sci USA 1996;93:8395–400.

    Article  PubMed  CAS  Google Scholar 

  143. Tanaka M, Itai T, Adachi M, et al. Downregulation of Fas ligand by shedding. Nature Med 1998;4:31–6.

    Article  PubMed  CAS  Google Scholar 

  144. Tartaglia AT, Pennica D, Goeddel DV. Ligand passing the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem 1993;268: 18542–8.

    PubMed  CAS  Google Scholar 

  145. Tawa NE, Odessey R, Goldberg AL. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J Clin Invest 1997;100:197–203.

    Article  PubMed  CAS  Google Scholar 

  146. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–62.

    Article  PubMed  CAS  Google Scholar 

  147. Thornberry NA, Lazebnik Y. Caspases enemies within. Science 1998;281:1313–6.

    Article  Google Scholar 

  148. Trauth BC, Klas C, Peter AMJ, et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 1989;245:301–5.

    Article  PubMed  CAS  Google Scholar 

  149. Tsujimoto Y. Apoptosis and necrosis: intracellular ATP levels as a determinant for cell death modes. Cell Death Diff 1997;4:429–34.

    Article  CAS  Google Scholar 

  150. Uren AG, Pakusch M, Hawkins CJ, et al. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc Natl Acad Sci USA 1996;93:4974–8.

    Article  PubMed  CAS  Google Scholar 

  151. Uren AG, Vaux DL. Viral inhibitors of apoptosis. Vitam Horm 1997;53:175–93.

    Article  PubMed  CAS  Google Scholar 

  152. Van de Craen M, Van Loo G, Pype S, et al. Identificatin of new caspase homologue: caspase-14. Cell Death Diff 1998;5:838–46.

    Article  CAS  Google Scholar 

  153. Van den Eijnde SM, Boshart L, Reutelingsperger CPM, et al. Phosphatidylserine plasma membrane asymmetry in vivo: a pancellular phenomenon which alters during apoptosis. Cell Death Diff 1997;4:311–6.

    Article  CAS  Google Scholar 

  154. Van den Eijnde SM, Luijsterburg AJM, Boshart L, et al. In situ detection of apoptosis during embryogenesis with annexin V: from whole mount to ultrastructure. Cytometry 1997;29:313–20.

    Article  PubMed  Google Scholar 

  155. Van Engeland M, Nieland LJW, Ramaekers FCS. et al. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 1998;31:1–9.

    Article  PubMed  Google Scholar 

  156. Van Heerde WL, De Groot PG, Reutelinsperger CPM. The complexity of the phospholipid binding protein annexin V. Thromb Haemost 1995;73:172–9.

    PubMed  Google Scholar 

  157. Vanags DM, Porn-Ares MI, Coppola S, et al. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 1996;271:31075–85.

    Article  PubMed  CAS  Google Scholar 

  158. Wallach D. Cell death induction by TNF: a matter of self control. Trends Cell Biol 1997;22:107–9.

    CAS  Google Scholar 

  159. Wallach D. Placing death under control. Nature 1997;388:123–6.

    Article  PubMed  CAS  Google Scholar 

  160. Wallach D, Kovalenko AV, Vasfolomeev EE, et al. Death-inducing functions of ligands of the tumor necrosis factor family: a Sanhedrin verdict. Curr Opin Immunol 1998;10:279–88.

    Article  PubMed  CAS  Google Scholar 

  161. Wang BY, Ho HKV, Lin PS, et al. Regression of atherosclerosis: role of nitric oxide. Circulation 1999;99:1236–41.

    PubMed  CAS  Google Scholar 

  162. Wang ZQ, Stingl L, Morrison C, et al. TNFR80-dependent enhancement of TNFR60-induced cell death is mediated by TNFR60-associated factor 2 and is specific for TNFR60. J Immunol 1998;161:3136–42.

    Google Scholar 

  163. Williamson P, Bevers EM, Smeets EF, et al. Continuous analysis of the mechanism of activated transbilayer lipid movements in platelets. Biochemistry 1995;34:10448–55.

    Article  PubMed  CAS  Google Scholar 

  164. Woo M, Hakem R, Soengas MS, et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 1998;12:806–10.

    Article  PubMed  CAS  Google Scholar 

  165. Wyllie AH, Kerr JFR, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1980;68:251–306.

    Article  PubMed  CAS  Google Scholar 

  166. Xue D, Horvitz HR. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 1995;377:248–51.

    Article  PubMed  CAS  Google Scholar 

  167. Yamamoto H, Uchigata Y, Okamoto H. Streptozocin and alloxan induce DNA strand breaks and Poly (ADP-ribose) synthase in pancreatic islets. Nature 1981;294:284–6.

    Article  PubMed  CAS  Google Scholar 

  168. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the Bcl-2 family and cell death. Blood 1996;88:386–401.

    PubMed  CAS  Google Scholar 

  169. Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspases by olgimerization. Mol Cell 1998;1:319–25.

    Article  PubMed  CAS  Google Scholar 

  170. Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen downregulated with the receptor of tumor necrosis factor. J Exp Med 1989;169: 1747–56.

    Article  PubMed  CAS  Google Scholar 

  171. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta 1995;1241:139–76.

    PubMed  Google Scholar 

  172. Zou H, Henzel WJ, Liu X, et al. Apaf-1, a human protein homologous to c elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Holtz.

Additional information

H. Heinrich ist Stipendiat der Deutschen Herzstiftung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtz, J., Heinrich, H. Apoptose—was ist das?. Herz 24, 196–210 (1999). https://doi.org/10.1007/BF03044962

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044962

Schlüsselwörter

Key Words

Navigation