Skip to main content
Log in

Regulation der endothelialen NO-Produktion durch Rho-GTPasen

  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

□ HMG-CoA-Reduktasehemmer (Statine) reduzieren die Inzidenz von Herzinfarkten und Schlaganfällen. An menschlichen Endothelzellen und in Tierversuchen konnte gezeigt werden, daß Statine unabhängig von ihrer Lipidsenkung zu einer Hochregulation der endothelialen Stickstoffmonoxid-(NO-)Produktion führen. Der Mechanismus dieses antiatherogenen Effektes ist unbekannt.

□ Run-on-Assays und RNA-Degradationsstudien zeigten, daß Statine die Expression der endothelialen NO-Synthase (eNOS) durch Verlängerung ihrer mRNA-Halbwertszeit erhöhen. Dieser Effekt konnte durch Zugabe der Zwischenprodukte der Cholesterinbiosynthese, L-Mevalonat und Geranylgeranylpyrophosphat (GGPP), nicht jedoch durch Farnesylpyrophosphat (FPP) oder LDL-Cholesterin rückgängig gemacht werden. Da Rho-GTPasen geranylgeranyliert werden, untersuchten wir den Einfluß von Rho auf die eNOS-Expression. Immunoblotanalysen und (35S)-GTPγS-Bindungsstudien zeigten, daß Statine die Membrantranslokation und Aktivität von Rho hemmen. Spezifische Hemmung von Rho durch C3-Transferase sowie Überexpression einer dominant-negativen N19Rho-A-Mutante erhöhten die eNOS-Expression, während die Stimulation von Rho durch E. coli Cytotoxic Necrotizing Factor-1 die NO-Produktion hemmte. Immunfluoreszenzhistochemie, Inhibitoren des Zytoskeletts und transiente Transfektionsstudien wiesen darauf hin, daß Rho durch Hemmung des Focal Adhesion Complex und des Actin-Zytoskeletts zu einer negativen Regulation der eNOS-mRNA-Halbwertszeit führt.

□ Die Aufklärung des Mechanismus der Hochregulation von NO durch Rho-GTPasen bietet neue Ansatzpunkte für spezifische pharmakologische Interventionen zur Steigerung der endothelialen NO-Produktion und damit zur Therapie von Arteriosklerose, pulmonaler Hypertonie, Schlaganfall und Herzinsuffizienz.

Abstract

□ Endothelial-derived nitric oxide (NO) is an important mediator of vascular function. Clinical studies indicate that HMG-CoA reductase inhibitors (statins) improve endothelial function and reduce the incidence of stroke and myocardial infarction.

□ Treatment of human endothelial cells with statins increased the expression of endothelial NO synthase (eNOS) protein and mRNA expression. Statins increased eNOS mRNA half-life but did not change eNOS gene transcription. Inhibition of mevalonate synthesis by statins not only blocks the formation of cholesterol but also of isoprenoids. The upregulation of eNOS expression by statins was independent of cholesterol but mediated via the inhibition of the isoprenoid geranylgeraniol, whereas farnesiol had no effect on eNOS. Immunoblot analyses, (35S)-GTPγS-binding assays and transfection studies revealed that statins upregulate eNOS expression by blocking the geranylgeranylation of the GTPase Rho which is necessary for its membrane-associated activity. Studies with mice showed, that statin treatment upregulates eNOS expression and function independent of serum cholesterol levels. Prophylactic treatment with statins augmented cerebral blood flow and reduced cerebral infarcts in normocholesterolemic mice. These effects of statins were completely absent in eNOS-deficient mice indicating that enhanced eNOS activity by statins is the predominant mechanism by which these agents protect against cerebral injury.

□ Our results suggest that statins provide a novel prophylactic treatment strategy for increasing blood flow and reducing brain injury during cerebral ischemia. Upregulation of eNOS by inhibiting Rho may provide a new pharmacologic target for the treatment of arteriosclerosis, pulmonary hypertension, and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Aktories K. Bacterial toxins that target rho proteins. J Clin Invest 1997;12:S11–3.

    Google Scholar 

  2. Alonso J, Sanchez de Minguel L, Monton M, Casado S, A Lopez-Farre. Endothelial cytosolic proteins bind to the 3′-untranslated region of endothelial nitric oxide synthase mRNA: regulation by tumor necrosis factor alpha. Mol Cell Biol 1997;17:5719–26.

    PubMed  CAS  Google Scholar 

  3. Aviram M, Hussein O, Rosenblatt M, Schlezinger S, Hayek T, S Keidar. Interactions of platelets, macrophages, and lipoproteins in hypecholesterolemia: antiatherogenic effects of HMG-CoA reductase inhibitor therapy. J Cardiovasc Pharmacol 1998;31:39–45.

    Article  PubMed  CAS  Google Scholar 

  4. Bassell G, Singer R.H. mRNA and cytoskeletal filaments. Curr Opin Cell Biol 1997;9:109–15.

    Article  PubMed  CAS  Google Scholar 

  5. Blauw GJ, Lagaay AM, Smelt AH, Westendorp RG. Stroke, statins, and cholesterol. A meta-analysis of randomized, placebo-controlled, double-blind trials with HMG-CoA reductase inhibitors. Stroke 1997;28:946–50.

    PubMed  CAS  Google Scholar 

  6. Cholesterol and Recurrent Events Trial Investigators. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N. Engl. J. Med. 1996;335:1001–9.

    Article  Google Scholar 

  7. Endres M, Laufs U. HMG-CoA Reduktasehemmer und Schlaganfallrisiko. Nervenarzt 1998;69:717–21.

    Article  PubMed  CAS  Google Scholar 

  8. Endres M, Laufs U, Huang Z, Huang PL, Moskowitz MA, Liao JK. Stroke protection by HMG CoA reductase inhibitors mediated by upregulation of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1998;95:8880–5.

    Article  PubMed  CAS  Google Scholar 

  9. Endres M, Laufs U, Merz H, and Kaps M. Focal expression of intercellular adhesion molecule-1 in the human carotid bifurcation. Stroke 1997;28:77–82.

    PubMed  CAS  Google Scholar 

  10. Essig M, Nguyen G, Prie D, Escoubet B, Sraer JD, Friedlander G. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase fibrinolytic activity in rat aortic endothelial cells. Circ Res 1998;83:683–90.

    PubMed  CAS  Google Scholar 

  11. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990;343:425–30.

    Article  PubMed  CAS  Google Scholar 

  12. Hall, A. Rho GTPase and the actin cytoskeleton. Science 1998;279:509–14.

    Article  PubMed  CAS  Google Scholar 

  13. Hernandez-Perera O, Perez-Sala D, Navarro-Antolin J, et al. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J. Clin Invest 1998;101:2711–19.

    Article  PubMed  CAS  Google Scholar 

  14. Hidaka Y, Eda T, Yonemoto M, Kamei T. Inhibition of cultured vascular smooth muscle cell migration by simvastatin. Atherosclerosis 1992;95:85–94.

    Article  Google Scholar 

  15. Kirino M, Sato S, Kobayashi T, et al. Impact of pravastatin on secondary prevention of coronary artery disease in normolipidemic patients: prospective randomised trial (PCS Study). Circulation 1998;98:1–534.

    Google Scholar 

  16. Kohl NE, Mosser SD, deSolms SJ, et al. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993;260:1934–37.

    Article  PubMed  CAS  Google Scholar 

  17. Laufs U, La Fata V, Liao JK. Inhibition of 3-hydroxy-3-methylglutaryl (HMG) CoA reductase blocks hypoxia-mediated downregulation of endothelial nitric oxide synthase. J Biol Chem 1997;272:31730–5.

    Article  Google Scholar 

  18. Laufs U, Böhm M, Liao JK. Neue Erkenntnisse über die Wirkung von HMG-CoA-Reduktase-Hemmern. Dtsch Med Wochenschr 1997;41:1255–59.

    Article  Google Scholar 

  19. Laufs U, Erdmann E. Stickstoffmonoxid als Signalmolekül im Herz-Kreislaufsystem. Dtsch Med Wochenschr 1998;123:1562–5.

    PubMed  CAS  Google Scholar 

  20. Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Circulation 1998;97:1129–35.

    PubMed  CAS  Google Scholar 

  21. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GT-Pase. J Biol Chem 1998;273:24266–71.

    Article  PubMed  CAS  Google Scholar 

  22. Liao JK. Endothelium and acute coronary syndromes. Clin Chem 1998;44:1799–808.

    PubMed  CAS  Google Scholar 

  23. LIPID Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998;339:1349–57.

    Article  Google Scholar 

  24. Miyamoto A, Laufs U, Pardo C, Liao JK. Modulation of bradykinin receptor ligand binding affinity and its coupled G-proteins by nitric oxide. J Biol Chem 1997;272:19601–8.

    Article  PubMed  CAS  Google Scholar 

  25. Nickenig G, Baumer AT, Grohe C, et al. Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation 1998;97:2197–201.

    PubMed  CAS  Google Scholar 

  26. Nickenig G, Murphy TJ. Enhanced angiotensin receptor type 1 mRNA degradation and induction of polyribosomal mRNA binding proteins by angiotensin II in vascular smooth muscle cells. Mol Pharmacol 1996;50:743–51.

    PubMed  CAS  Google Scholar 

  27. O’Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 1997;95:1126–31.

    PubMed  Google Scholar 

  28. Packard CJ. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 1998;97:1140–445.

    Google Scholar 

  29. Pitt B, Waters D, Brown W, et al. Results of the Atorvastatin Versus Revascularization Treatments (AVERT) Study. Circulation 1998;98:1–636.

    Google Scholar 

  30. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 1998;101:731–6.

    Article  PubMed  CAS  Google Scholar 

  31. Sah VP, Hoshijima M, Chien K, Heller Brown J. Rho is required for Gaq and α1-adrenergic receptor signaling in cardiomyocytes. J Biol Chem 1996;271:31185–90.

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K. Gln 63 of rho is deaminated by Escherichia coli cytotoxic necrotizing factor-1. Nature 1997;387:725–9.

    Article  PubMed  CAS  Google Scholar 

  33. Schnabel P, Gas H, Nohr T, Camps M, Böhm M. Identification and characterization of G protein-regulated phospholipase C in human myocardium. J Mol Cell Cardiol 1996:28:2419–27.

    Article  PubMed  CAS  Google Scholar 

  34. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with Pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995;333:1301–7.

    Article  PubMed  CAS  Google Scholar 

  35. Thorburn J, Xu S, Thorburn A. MAP kinase-and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO 1997;16:1888–900.

    Article  CAS  Google Scholar 

  36. Williams K, Sukhova GK, Herrington DM, Libby P. Pravastatin has cholesterol-lowering independent effects on the wall of atherosclerotic monkeys. J Am Coll Cardiol 1998;31:684–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Laufs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laufs, U., Endres, M. & Liao, J.K. Regulation der endothelialen NO-Produktion durch Rho-GTPasen. Med Klin 94, 211–218 (1999). https://doi.org/10.1007/BF03044857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044857

Schlüsselwörter

Key Words

Navigation