Skip to main content
Log in

Die genetischen Ursachen der hypertrophischen Kardiomyopathie

Genetic causes of hypertrophic cardiomyopathy

  • Übersicht
  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

□ Die hypertrophische Kardiomyopathie ist eine dominant vererbte Erkrankung des Myokards. Die bisher identifizierten Ursachen erfassen bis zu 75% aller Fälle. Die für die Krankheit verantwortlichen Mutationen führen zu Veränderungen von Proteinen, die eine myokardiale „Motorfunktion” haben oder die diese funktion kontrollieren. Die hypertrophische Kardiomyopathie kann deshalb als eine Krankheit des myokardialen Muskelapparates definiert werden.

□ Die klinische Progression ist langsam. Das größte Risiko dieser Krankheit ist der plötzliche Herztod. Im Gegensatz zu den Ursachen ist die Pathogenese der hypertrophischen Kardiomyopathie noch nicht geklärt.

Summary

□ Hypertrophic cardiomyopathy is a dominantly inherited disease of the heart. Heterogeneous sets of mutations responsible for this condition have been identified in seven genes coding for proteins involved in the contraction mechanism or in the control of contraction of the myocardium. Known mutations imply structural and functional changes in the following proteins: in ventricle specific β-myosin heavy chain, in essential and regulatory myosin light chains, in troponin subunits T and I, in α-tropomyosin and in myosin binding protein-C. The gene of one additional genomic HCM-locus is not known. Since two thirds or more of all cases can be traced to one of the respective genes, HCM has been classified as a disease of the cardiac sarcomere. Heterogeneity does not only exist between genes, but also within genes. At least 84 different mutations have been identified to date. More than half of them have been detected in the β-myosin heavy chain gene. Thus, mutations in this gene account for most of the cases of HCM. The extent of data about causes is in contrast to the lack of definite knowledee about pathogenic mechanisms. Since the disorder is in many cases mild with symptoms developing frequently not before the end of the second decade, myocardial dysfunctions can presumably not directly be traced to altered contractility, but rather to effects which accumulate with a long asymptomatic lag period and which gradually lead to hypertrophy, conduction problems and ultimately to cardiac failure. The disease may be considered as an indirect and secondary response to a mildly distorted contraction process. The rapid progress in the analysis of causes suggests that the study of genes will assume a role in the context of the clinical management of HCM, in particular regarding diagnosis, prognosis, counselling of patients and families and -possibly-therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bonne G, Carrier L, Bercovici J, et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nature Genet 1995;1:438–40.

    Article  Google Scholar 

  2. Brigden W. Uncommon myocardial diseases: the non-coronary cardiomyopathies. Lancet 1957;2:1179–84.

    Article  Google Scholar 

  3. Carrier L, Bonne G, Bährend E, et al. Organization and sequence of human cardiac myosin binding protein C gene (MYBPC 3) and identification of mutations predicted to produce truncated proteins in familial hyperdicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res 1997;80:427–34.

    PubMed  CAS  Google Scholar 

  4. Codd MB, Sugrue DD, Gersh BJ, Melton III LJ. Epidemiology of idopathic dilated and hypertrophic cardiomyopathy. A population-based study on Olmsted County, Minnesota, 1975–84. Circulation 1989;80:564–72.

    PubMed  CAS  Google Scholar 

  5. Cuda G, Fananapazir L, Zhu W, Sellers JR, Epstein ND. Skeletal muscle expression and abnormal function of β-myosin in hypertrophic cardiomyopathy. J Clin Invest 1993;91:2861–5.

    Article  PubMed  CAS  Google Scholar 

  6. Davies MJ. The current status of myocardial disarray in hypertrophic cardiomyopathy. Br Heart J 1984;51:361–3.

    Article  PubMed  CAS  Google Scholar 

  7. Emanuel R, Withers R. The cardiomyopathies. In: Emery AEH, Rimoin DL, eds. Principles and practice of medical genetics, 2nd edn. Edinburgh: Livingstone 1992;1263–72.

    Google Scholar 

  8. Epp TA, Dixon IM, Wang HY, Sole MJ, Liew C. Structural organization of the human cardiac alpha-myosin heavy chain gene (MYH6). Genomics 1993;18: 505–9.

    PubMed  CAS  Google Scholar 

  9. Evans W. Familial cardiomegaly. Br Heart J 1949;11: 68–82.

    Article  PubMed  CAS  Google Scholar 

  10. Gautel M, Zuffardi O, Freiburg A, Labeit S. Phosphorylation switches specific for the cardiac isoform of myosin bindung protein-C: a modulator of cardiac contraction? EMBO J 1995;14:1952–60.

    PubMed  CAS  Google Scholar 

  11. Geisterfer-Lowrance AAT, Christe M, Conner DA, et al. A mouse model of familial hypertrophic cardiomyopathy. Science 1996;272:731–4.

    Article  PubMed  CAS  Google Scholar 

  12. Geisterfer-Lowrance AA, Kass S, Tanigawa G, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 1990;62:999–1006.

    Article  PubMed  CAS  Google Scholar 

  13. Goodwin JF, Oakley C. The cardiomyopathies. Br Heart J 1972;34:545–52.

    Article  PubMed  CAS  Google Scholar 

  14. Greve G, Bachinski L, Friedman DL, et al. Isolation of a de novo mutant myocardial βMHC protein in a pedigree with hypertrophic cardiomyopathy. Hum Mol Genet 1994;3:2073–5.

    PubMed  CAS  Google Scholar 

  15. Harper PS, Clarke A. Testing may be unhelpful. Br Med J 1995;310:857–8.

    Google Scholar 

  16. Holmes KC. The swinging lever-arm hypothesis of muscle contraction. Curr Biol 1997;7:R112–8.

    Article  PubMed  CAS  Google Scholar 

  17. Jaenicke T, Diederich KW, Haas W, et al. The complete sequence of the human b-myosin heavy chain gene and comparative analysis of its product. Genomics 1990;8:194–206.

    Article  PubMed  CAS  Google Scholar 

  18. Jarcho JA, McKenna W, Paré JA, et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med 1989;321:1372–8.

    PubMed  CAS  Google Scholar 

  19. Jeschke B, Uhl K, Weist B, et al. A high risk phenotype of hypertrophic cardiomyopathy associated with a compound genotype of two mutated β-myosin heavy chain genes. Hum Genet (in press).

  20. Kimura A, Harada H, Park JE, et al. Mutations in the cardiac troponin T gene associated with hypertrophic cardiomyopathy. Nature Genet 1997;16:379–82.

    Article  PubMed  CAS  Google Scholar 

  21. Lalouel JM, White RL. Analysis of genetic linkage. In: Rimoin DL, Connor JM, Pyeritz RE, eds. Principles and practice of medical genetics, 3rd edn. New York: Livingstone, 1996:111–26.

    Google Scholar 

  22. Lankford EB, Epstein ND, Fananapazir L, Sweeney LE. Abnormal contractile properties of muscle fibers expressing β-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest 1995;95:1409–14.

    Article  PubMed  CAS  Google Scholar 

  23. Lin D, Bobkova A, Homsher E, Tobacman LS. Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. J Clin Invest 1996;97:2842–8.

    Article  PubMed  CAS  Google Scholar 

  24. Lowey S, Waller GS, Trybus KM. Skeletal muscle myosin light chains are essential for physiological shortening. Nature 1993;365:454–6.

    Article  PubMed  CAS  Google Scholar 

  25. MacRae C, Ghaisas N, Kass S. Familial hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome maps to a locus on chromosome 7q3. J Clin Invest 1995;96:1216–20.

    Article  PubMed  CAS  Google Scholar 

  26. Marian AJ, Yu QT, Mann DL, Graham FL, Roberts R. Expression of a mutation causing hypertrophic cardiomyopathy disrupts sarcomere assembly in adult feline cardiac myocytes. Circ Res 1995;77:98–106.

    PubMed  CAS  Google Scholar 

  27. Maron BJ, Bonow RO, Cannon III RO, Leon MB, Epstein SE. Hypertrophic cardiomyopathy. Interrelations of clinical manifestation, pathophysiology, and therapy, Part I. New Engl J Med 1987;316;780–9.

    PubMed  CAS  Google Scholar 

  28. Maron BJ, Bonow RO, Cannon III RO, Leon MB, Epstein SE. Hypertrophic cardiomyopathy. Interrelations of clinical manifestation, pathophysiology, and therapy, Part II. New Engl J Med 1987;316:844–52.

    PubMed  CAS  Google Scholar 

  29. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild ED. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation 1995;92:785–9.

    PubMed  CAS  Google Scholar 

  30. Maron BJ, Roberts WC, McAllister HA, Rosing DR, Epstein SE. Sudden death in young athletes. Circulation 1980;62:218–29.

    PubMed  CAS  Google Scholar 

  31. Matsuoka R, Yoshida MC, Kanda N, Kimura M, Ozasa H, Takao A. Human cardiac myosin heavy chain gene mapped within chromosome region 14q11.2–q13. Am J Med Genet 1989;32:279–84.

    Article  PubMed  CAS  Google Scholar 

  32. McKenna WJ. Hypertrophic cardiomyopathy. In: Julian DG, Camm AJ, Fox KM, Hall RJC, Poole-Wilson PA, eds. Diseases of the heart, 2nd edn. London: Saunders, 1996:506–617.

    Google Scholar 

  33. McKenna WJ, Camm AJ. Sudden death in hypertrophic cardiomyopathy. Assessment of patients at high risk. Circulation 1989;80:1489–92.

    PubMed  CAS  Google Scholar 

  34. McKenna WJ, Spirito P, Desnos M, Dubourg O, Komajda M. Experience from clinical genetics in hypertrophic cardiomyopathy: proposal for new diagnostic criteria in adult members of affected families. Heart 1997;77:130–2.

    PubMed  CAS  Google Scholar 

  35. Moolman JC, Corfield VA, Posen B, et al. Sudden death due to troponin T mutations. J Am Coll Cardiol 1997;77:130–2.

    Google Scholar 

  36. Nishi H, Kimura A, Harada H, et al. Possible gene dose effect of a mutant β-myosin heavy chain gene on the clinical expression of familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun 1994;200:549–56.

    Article  PubMed  CAS  Google Scholar 

  37. Nishi H, Kimura A, Harada H, Koga Y, et al. A myosin missense mutation, not a null allele, causes familial hypertrophic cardiomyopathy. Circulation 1995;91:2911–5.

    PubMed  CAS  Google Scholar 

  38. Paré JAP, Fraser RG, Pirozynski WJ, Shanks JA, Stubington D. Hereditary cardiovascular dysplasia: a form of familial cardiomyopathy. Am J Med 1961;13:63–9.

    Google Scholar 

  39. Poetter K, Jiang H, Hassanzadeh S, et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nature Genet 1996;13:63–9.

    Article  PubMed  CAS  Google Scholar 

  40. Rayment I, Holden HM, Sellers JR, Fananapazir L, Epstein ND. Structural interpretation of the mutations in the β-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 1995;92:3864–8.

    Article  PubMed  CAS  Google Scholar 

  41. Rayment I, Rypniewski WR, Schmidt-Bäse K, et al. Threedimensional structure of myosin subfragment-I: a molecular motor. Science 1993;261:50–8.

    Article  PubMed  CAS  Google Scholar 

  42. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 1996;93:841–2.

    PubMed  CAS  Google Scholar 

  43. Rottbauer W, Gautel M, Zehelein J, et al. Novel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy. Characterization of cardiac transcript and protein. J Clin Invest 1997;100:475–82.

    Article  PubMed  CAS  Google Scholar 

  44. Saez LJ, Gianola KM, McNally EM, et al. Human cardiac myosin heavy chain genes and their linkage in the genome. Nucl Acids Res 1987;15:5443–59.

    Article  PubMed  CAS  Google Scholar 

  45. Sata M, Ikebe M. Functional analysis of the mutations in the human cardiac b-myosin that are responsible for familial hypertrophic cardiomyopathy. J Clin Invest 1996;98: 2866–73.

    Article  PubMed  CAS  Google Scholar 

  46. Solomon SD, Geisterfer Lowrance AA, et al. A locus for familial hypertrophic cardiomyopathy is closely linked to the cardiac myosin heavy chain genes, CRI-L436, and CRI-L329 on chromosome 14 at q11–q12. Am J Hum Genet 1990;47:389–94.

    PubMed  CAS  Google Scholar 

  47. Spirito P, Chiarella F, Carratino L, Berisso MZ, Bellotti P, Vecchio C. Clinical course and prognosis of hypertrophic cardiomyopathy in an outpatient population. N Engl J Med 1989;320:749–55.

    Article  PubMed  CAS  Google Scholar 

  48. Spirito P, Rapezzi C, Autore C, et al. Prognosis of asymptomatic patients with hypertrophic cardiomyopathy and nonsustained ventricular tachycardia. Circulation 1994;90:2743–7.

    PubMed  CAS  Google Scholar 

  49. Spirito P, Seidman CE, McKenna WJ, Maron BJ. The management of hypertrophic cardiomyopathy. N Engl J Med 1997;336:775–85.

    Article  PubMed  CAS  Google Scholar 

  50. Straceski AJ, Geisterfer-Lowrance AAT, Seidman CE, Leinwand LE. Functional analysis of myosin missense mutations in familial hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 1994;91:589–93.

    Article  PubMed  CAS  Google Scholar 

  51. Sweeney HL, Straceski AJ, Leinwand LA, Tikunov BA, Faust L. Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J Biol Chem 1994;269:1603–5.

    PubMed  CAS  Google Scholar 

  52. Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J 1958;20:1–8.

    Article  PubMed  CAS  Google Scholar 

  53. Thierfelder L, MacRae C, Watkins H, et al. A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc Natl Acad Sci USA 1993;90:6270–4.

    Article  PubMed  CAS  Google Scholar 

  54. Thierfelder L, Watkins H, MacRae C, et al. α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 1994;77:701–12.

    Article  PubMed  Google Scholar 

  55. Uyeda T, Abramson PD, Spudich JA. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci USA 1996;93:4459–64.

    Article  PubMed  CAS  Google Scholar 

  56. Vikstrom KL, Factor SM, Leinwand LE. Mice expressing mutated myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol med 1996;5:556–67.

    Google Scholar 

  57. Watkins H, Conner D, Thierfelder L, et al. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nature Genet 1993;3:333–7.

    Article  PubMed  CAS  Google Scholar 

  58. Watkins H, MacRae C, Thierfelder L, et al. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nature Genet 1993;3:333–7.

    Article  PubMed  CAS  Google Scholar 

  59. Watkins H, Seidman JG, Seidman CE. Familial hypertrophic cardiomyopathy: a genetic model of cardiac hypertrophy. Hum Mol Genet 1995;4:1721–7.

    Article  PubMed  CAS  Google Scholar 

  60. Watkins H, Seidman CE, Seidman JG, Feng HS. Sweeney HL. Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. J Clin Invest 1996;98:2456–61.

    Article  PubMed  CAS  Google Scholar 

  61. Watkins H, Thierfelder L, Hwang DS, McKenna W, Seidman JG, Seidman CE. Sporadic hypertrophic cardiomyopathy due to de novo myosin mutations. J Clin Invest 1992;90:1666–71.

    Article  PubMed  CAS  Google Scholar 

  62. Zot AS, Potter JD. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Ann Rev Biophys Chem 1987;16:535–59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans -Peter Vosberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vosberg, H.P. Die genetischen Ursachen der hypertrophischen Kardiomyopathie. Med Klin 93, 252–259 (1998). https://doi.org/10.1007/BF03044801

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044801

Schlüsselwörter

Key words

Navigation