Skip to main content
Log in

Therapeutische Optionen zur Verbesserung der Myokardperfusion bei koronarer Atherosklerose

Therapeutic options to improve myocardial perfusion in coronary atherosclerosis

  • Koronare Atherosklerose — Funktionelle Konsequenzen
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die Kombination aus morphologischen arteriosklerotischen Veränderungen der Koronargefäße und einer Störung der Tonusregulation in den Epikard- und Widerstandsgefäßen ist entscheidend für die Limitation des myokardialen Sauerstoffangebotes. Das Endothel spielt dabei eine zentrale Rolle für die funktionelle Beeinträchtigung der Koronararterien bei Patienten mit koronarer Arteriosklerose oder Risikofaktoren. Eine Therapie, welche darauf abzielt, die endotheliale Dilatationsfähigkeit zu steigern, verbessert die myokardiale Perfusion bei Patienten mit einer koronaren Herzkrankheit. Auch bei Patienten mit angiographisch normalen Koronararterien oder geringen Wandveränderungen, bei denen aufgrund einer Mikrozirkulationsstörung eine Myokardischämie auftritt, kann eine Therapie aus symptomatischen Gründen indiziert sein.

Die koronare Tonusregulation und Gefäßproliferationsprozesse werden beide durch das Redoxgleichgewicht in der Gefäßwand zwischen Stickstoffmonoxid (NO) und Angiotensin II/Sauerstoffradiakalen gesteuert und sind somit eng miteinander verknüpft. Ziel einer therapeutischen Intervention, um die endotheliale Dysfunktion zu verbessern, ist es demnach, zum einen die NO-Bioaktivität in der Gefäßwand zu erhöhen, zum anderen den oxidativen Streß zu reduzieren. Die NO-Bioaktivität kann durch ACE-Hemmer, Steigerung der Scherkräfte am Endothel durch Sport, Östrogene oder L-Arginin verbessert werden. Bei diesen Therapien konnte daher auch klinisch eine Verbesserung der endothelabhängigen Dilatationsfähigkeit nachgewiesen werden. Ebenfalls mit einer Besserung der endothelialen Vasoreaktivität gehen Behandlungen einher, welche den oxidativen Streß reduzieren, wie Antioxidanzien und insbesondere Lipidsenker. Endothelinantagonisten und Angiotensin-II-Rezeptor-Blocker stellen vielversprechende Therapieansätze dar, welche jedoch noch validiert werden müssen.

Viele Therapiestrategien, welche auf eine Verbesserung der endothelialen Dysfunktion abzielen, konnten bisher nachweisen, daß sie auch die Prognose günstig beeinflussen. Ob eine Endotheldysfunktion allein — ohne Hinweis auf eine manifeste koronare Herzkrankheit—aus prognostischer Indikation ausreicht, cine medikamentöse Langzeittherapie zu rechtfertigen, muß jedoch noch geklärt werden.

Summary

The combination of morphological atherosclerotic alterations of coronary vessels and disturbance of coronary vasomotor control of epicardial and resistance vessels determines the amount of myocardial oxygen supply. The endothelium plays a crucial role for functional alterations of the coronary vessels in patients with early atherosclerosis or risk factors for coronary artery disease. A therapy which aims to ameliorate endothelium-dependent vasodilator capacity improves myocardial perfusion in patients with coronary artery disease. Thereby, even in patients with angiographically normal or minimally diseased coronary vessels who develop myocardial ischemia due to microvascular disease, symptomatic improvement might be achieved.

Control of coronary vasomotor tone and proliferation processes within the vessel wall are both determined by the redox equilibrium of nitri oxide (NO) and superoxide radicals (O 2 ), induced by angiotensin II. Thus, vasomotor control and vessel wall proliferation is closely related to each other. Aim of a therapeutic intervention to enhance NO bioactivity is either to increase NO production in the endothelium or to decrease O 2 production, which rapidly inactivates NO. NO bioactivity can be ameliorated by ACE-inhibitors, increase of shear stress on the endothelium by physical exercise, estrogens or L-arginine. For these therapies clinically an improvement of endothelial vasodilator function could be shown. In addition, improvement of endothelial vasodilator function can be achieved by a treatment which reduced oxidative stress in the vascular wall such as antioxidants and, especially, lipid lowering drugs. Endothelin-antagonists and angiotensin II receptor-blockers are promising to improve endothelial dysfunction. However, these therapies have to be validated.

Most therapy strategies, which have shown to ameliorate endothelial dysfunction, are also able to improve prognosis of the patients. Whether endothelial dysfunction alone—without evidence of overt coronary atherosclerosis — is sufficient to justify a long-term therapy to improve prognosis, still has to be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz, P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 1995;332:488–93.

    Article  PubMed  CAS  Google Scholar 

  2. Andrews TC, Raby K, Barry J, et al. Effect of cholesterol reduction on myocardial ischemia in patients with coronary disease. Circulation 1997;95:324–8.

    PubMed  CAS  Google Scholar 

  3. Azen SP, Qian D, Mack WJ. et al. Effect of supplementary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation 1996;94:2369–72.

    PubMed  CAS  Google Scholar 

  4. Bassenge E, Busse R. Endothelial modulation of coronary tone. Prog Cardiovasc Dis 1988;30:349–80.

    Article  PubMed  CAS  Google Scholar 

  5. Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995;91:2488–96.

    PubMed  CAS  Google Scholar 

  6. Brandes RP, Barton M, Philippens KM, Schweitzer G, Mügge A. Endothelial-derived superoxide anions in pig coronary arteries: evidence from lucigenin chemiluminescence and histochemical techniques. J Physiol 1997;500:331–42.

    PubMed  CAS  Google Scholar 

  7. Brown BG, Bolson E, Peterson RB, Pierce CD, Dodge HG. The mechanism of nitroglycerin action: stenosis vasodilation as a major component of the drug response. Circulation 1981;64:1089.

    PubMed  CAS  Google Scholar 

  8. Chauhan A, More RS, Mullins PA, Taylor G, Petch MC, Schofield PM. Aging-associated endothelial dysfunction in humans is reversed by L-arginine. J Am Coll Cardiol 1996;28:1796–804.

    Article  PubMed  CAS  Google Scholar 

  9. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 1992;90:1168–72.

    Article  PubMed  CAS  Google Scholar 

  10. D’Uscio LV, Moreau P, Shaw S, Takase H, Barton M, Lüscher TF. Effects of chronic ETA-receptor blockade in angiotensin II-induced hypertension. Hypertension 1997;29:435–41.

    PubMed  Google Scholar 

  11. Dendorfer A. Pharmakologie der Nitrate und anderer NO-Donatoren. Herz 1996;21:38–49.

    PubMed  Google Scholar 

  12. Diaz MN, Frei B, Vita JA, Keaney JFJ. Antioxidants and atherosclerotic heart disease. N Engl J Med 1997;337:408–16.

    Article  PubMed  CAS  Google Scholar 

  13. Diet F, Pratt RE, Berry GJ, Momose N, Gibbons GH, Dzau VJ. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1997;94:2756–67.

    Google Scholar 

  14. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet 1991;338:1546–50.

    Article  PubMed  CAS  Google Scholar 

  15. Egashira K, Hirooka Y, Kai H, et al. Reduction in serum cholesterol with pravastatin improves endothelium-dependent coronary vasomotion in patients with hypercholesterolemia. Circulation 1994;89:2519–24.

    PubMed  CAS  Google Scholar 

  16. Egashira K, Hirooka Y, Kuga T, Mohri M, Takeshita A. Effects of L-arginine supplementation on endothelium-dependent coronary vasodilation in patients with angina pectoris and normal coronary angiogramms. Circulation 1996;94:130–4.

    PubMed  CAS  Google Scholar 

  17. Flavahan NA, Vanhoutte PM. Endothelial cell signaling and endothelial dysfunction. Am J Hypertens 1995;8:Suppl.:28S-41S.

    Article  PubMed  CAS  Google Scholar 

  18. Folland ED, Parisi AF, Hartigan P, on behalf of the Veterans Affairs ACME Investigators. Percutaneous transluminal coronary angioplasty wersus medical therapy for stable angina pectoris: outcomes for patients with double-vessel versus single-vessel coronary disease in a VA cooperative randomized trial. J Am Coll Cardiol 1997;29:1505–11.

    Article  PubMed  CAS  Google Scholar 

  19. Forrester JS, Shah PK. Lipid lowering versus revascularisation: an idea whose time (for testing) has come. Circulation 1997;96:1360–2.

    PubMed  CAS  Google Scholar 

  20. Frielingsdorf J, Seiler C, Kaufmann P, Vassalli G, Suter T, Hess OM. Normalization of abnormal vasomotion by calcium antagonists in patients with hypertension. Circulation 1996;93:1380–7.

    PubMed  CAS  Google Scholar 

  21. Furberg CD, Psaty BM, Meyer JV. Nifedipine. Dose-related increase in mortality in patients with coronary heart disease. Circulation 1995;92:1326–31.

    PubMed  CAS  Google Scholar 

  22. Gaglione A, Hess OM, Corin WJ, et al. Is there coronary vasoconstrictin after by beta-adrenergic blockade in patients with coronary artery disease? J Am Coll Cardiol 1987;10:299.

    PubMed  CAS  Google Scholar 

  23. Gilligan DM, Badar DM, Panza JA, Quyyumi AA, Cannon RO3. Acute vasclar effects of estrogen in, postmenopausal women. Circulation 1994;90:786–91.

    PubMed  CAS  Google Scholar 

  24. Gilligan DM, Sack MN, Guetta V, et al. Effect of antioxidant vitamins on low density lipoprotein oxidation and impaired endothelium-dependent vasodilation in patients with hypercholesterolemia. J Am Coll Cardiol 1994;24:1611–7.

    Article  PubMed  CAS  Google Scholar 

  25. Goodfriend TI, Elliott ME, Catt KJ. Angiotensin receptors and their antagonists. N Engl J Med 1996;334:1649–54.

    Article  PubMed  CAS  Google Scholar 

  26. Gould KL, Martucci JP, Goldberg DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. A potential noninvasive marker of healing endothelium. Circulation 1994;89:1530–8.

    PubMed  CAS  Google Scholar 

  27. Grodstein F, Stampfer MJ, Colditz GA, et al. Postmenopausal hormone therapy and mortality. N Engl J Med 1997;336:1769–75.

    Article  PubMed  CAS  Google Scholar 

  28. Guetta V, Quyyumi AA, Prasad A, Panza JA, Waclawiw M, Cannon RO3. The role of nitric oxide in coronary vascular effects of estrogen in postmenopuasal women. Circulation 1997;96: 2795–801.

    PubMed  CAS  Google Scholar 

  29. Gupta S, Leatham EW, Carrington D, Mendall MA, Kaski JC, Camm AJ. Elevated chlamydia pneumoniae antibodies, cardiovascular envents, and azithromycin in male survivors of myocardial infarction. Circulation 1997;96:404–7.

    PubMed  CAS  Google Scholar 

  30. Gurfinkel E, Bozovich G, Daroca A, Beck E, Mautner B. Randomized trial of roxithromycin in non-Q-wave coronary syndromes: ROXIS pilot study. Lancet 1997;350:404–7.

    Article  PubMed  CAS  Google Scholar 

  31. Hakin AA, Petrovitch H, Burchfiel, CM, et al. Effects of walking on mortality among nonsmoking retired men. N Engl J Med 1998;338:94–9.

    Article  Google Scholar 

  32. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997;100:2153–7.

    Article  PubMed  CAS  Google Scholar 

  33. Haynes WG, Webb DJ. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 1994;344:852–4.

    Article  PubMed  CAS  Google Scholar 

  34. Heitzer T, Just H, Münzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 1996;94:6–9.

    PubMed  CAS  Google Scholar 

  35. Hjalmarson A, Olsson G. Myocardial infarction. Effects of β-blockade. Circulation 1991;84:VI:101–7.

    Google Scholar 

  36. Holtz J, Förstermann U, Pohl U, Giesler M, Bassenge E. Flow-dependent endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibtion. J Cardiovasc Pharmacol 1984;6:1161–7.

    Article  PubMed  CAS  Google Scholar 

  37. Isner JM, Walsh K, Symes J, et al. Arterial gene therapy for therapeutic angiogenesis in patients with periheral arery disease. Circulation 1995;91:2687–92.

    PubMed  CAS  Google Scholar 

  38. Jukema JW, Zwinderman AH, van Boven AJ, et al. Evidence for a synergistic effect of calcium channel blockers with lipid-lowering therapy in retarding progression of coroanry atherosclerosis in symptomatic patients with normal to moderately raised cholesterol levels. Arterioscler Thromb Vasc Biol. 1996;16:425–30.

    PubMed  CAS  Google Scholar 

  39. Kähler J, Köster R, Paul M, Hamm CW, Meinertz T. Endotheline bei kardiovaskulären Erkrankungen. Z Kardiol 1997;86:406–16.

    Article  PubMed  Google Scholar 

  40. Kritchevsky SB, Shimakawa T, Tell GS, et al. Dietary antioxidants and carotid artery wall thickness—The ARIC study. Circulation 1995;92:2142–50

    PubMed  CAS  Google Scholar 

  41. Kullo IJ, Mozes G, Schwartz RS, et al. Adventitial gene transfer of recombinant endothelial nitrix oxide synthase to rabbit carotid arteries alters vascular reactivity. Circulation 1997;96:2254–61.

    PubMed  CAS  Google Scholar 

  42. Lacoste L, Lam J, Hung J, Letchacovski G, Solymoss C, Waters D. Hyperlipidemia and coronary artery disease: correction of the increased thrombogenic potential with cholesterol reduction. Circulation 1995;92:3172–7.

    PubMed  CAS  Google Scholar 

  43. Laufs U, Plutzky J, Liao JK. Upregulation of endothelial nitrix oxide synthase by HMG CoA reductase inhibitors. Circulation 1997;96:I-677. abstract.

    Google Scholar 

  44. Laurensen JB, Harrison DG. Modulation of myocardial oxygen consumption through ACE inhibitors. NO effect? Circulation 1997;95:14–6.

    Google Scholar 

  45. Lerman A, McKinley L, Higano ST, Holmes DR. Oral chronic L-arginine administration improves coronary endothelial function in humans. J Am Coll Cardiol 1997;29:192A. abstract.

    Google Scholar 

  46. Leung WH, Lau CP, Wong CK. Beneficial effect of cholesterol-lowering therapy on coronary endothelium-dependent relaxation in hypercholesterolaemic patients. Lancet 1993;341:1496–500.

    Article  PubMed  CAS  Google Scholar 

  47. Levin ER. Endothelins. N Engl J Med 1996;333:356–63.

    Article  Google Scholar 

  48. Levine GN, Frei B Koulouris SN, Gerhard MD, Keaney JFJ, Vita JA. Acorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996;93: 1107–13.

    PubMed  CAS  Google Scholar 

  49. Levine GN, Keaney JF Jr, Vita JA. Cholesterol reduction in cardiovascular disease. Clinical benefits and possible mechanisms. N Engl J Med 1995;332:512–21.

    Article  PubMed  CAS  Google Scholar 

  50. Lopez BL, Christopher TA, Yue TL, Ruffolo R, Feuerstein GZ, Ma XL. Carvedilol, a new beta-adrenoreceptor blocker antihypertensive drug, protects against free-radical-induced endothelial dysfunction. Pharmacology 1995;51:165–73.

    Article  PubMed  CAS  Google Scholar 

  51. Lüscher TF, Yang Z. Calcium antagonists and ACE inhibitors. Effect on endothelium and vascular smooth muscle. Drugs 1993;46:121–32.

    Article  PubMed  Google Scholar 

  52. Lyons D, Webster J, Benjamin N. Effect of enalapril and quinapril on human forearm vasculature. Eur J Clin Pharmacol 1997;51: 373–8.

    Article  PubMed  CAS  Google Scholar 

  53. Mancini GBJ, Henry GC, Macaya C, et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996;94:258–65.

    PubMed  CAS  Google Scholar 

  54. Massy ZA, Keane WF, Kasiske BL. Inhibition of the mevalonate pathway: benefits beyond cholesterol reduction? Lancet 1996;347: 102–3.

    Article  PubMed  CAS  Google Scholar 

  55. Münzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. J Clin Invest 1995;95:187–94.

    Article  PubMed  Google Scholar 

  56. Niebauer J, Cooke JP. Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol 1996;28:1652–60.

    Article  PubMed  CAS  Google Scholar 

  57. O’Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within one month. Circulation 1997;95:1126–31.

    PubMed  Google Scholar 

  58. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993;91:2546–51.

    Article  PubMed  CAS  Google Scholar 

  59. Ohara Y, Peterson TE, Sayegh HS, Subramanian RR, Wilcox JN, Harrison DG. Dietary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation 1995;92:898–903.

    PubMed  CAS  Google Scholar 

  60. Oskarsson HJ, Heistad DD. Oxidative stress produced by angiotensin too. Implications for hypertension and vascular injury. Circulation 1997;95:557–9.

    PubMed  CAS  Google Scholar 

  61. Pepine CJ. Ongoing clinical trial of angiotensin-converting en-zyme inhibitors for treatment of coronary artery disease in patients with preserved left ventricular function. J Am Coll Cardiol 1996;27:1048–52.

    Article  PubMed  CAS  Google Scholar 

  62. Pitt B. Effect of ACE inhibitors on endothelial dysfunction: unanswered questions and implications for further investigation and therapy. Cardiovasc. Drugs Ther 1996;10:469–73.

    Article  PubMed  CAS  Google Scholar 

  63. Pitt B. The potential use of angiotensin-converting enzyme inhibitors in patients with hyperlipidemia. Am J Cardiol 1997;79:24–8.

    Article  PubMed  CAS  Google Scholar 

  64. Pitt B, Pepine CJ, O’Neill B, Haber H, Pressler M, Mancini GBJ, for the TREND investigators. Modulation of ACE inhibitor efficacy on coronary endothelial dysfunction by low density lipoprotein cholesterol. J Am Coll Cardiol 1997;29:70A. abstract.

    Article  Google Scholar 

  65. Quyyumi AA, Dakak N, Andrews NP, Gilligan DM, Panza JA, Cannon RO3. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation 1995;92:320–6.

    PubMed  CAS  Google Scholar 

  66. Quyyumi AA, Dakak N, Andrews NP, et al. Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J Clin Invest 1995;95:1747–55.

    Article  PubMed  CAS  Google Scholar 

  67. Quyyumi AA, Dakak N, Diodati JG, Gilligan DM, Panza JA, Cannon RO3. Effect of L-arginine on human coronary endothelium-dependent and physiologic vasodilation. J Am Coll Cardiol 1997;30:1220–7.

    Article  PubMed  CAS  Google Scholar 

  68. Rajagopalan S, Kurz S, Münzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation — Contribution to alterations of vasomotor tone. J Clin Invest 1996;97: 1916–23.

    Article  PubMed  CAS  Google Scholar 

  69. Reis SE, Gloth ST, Blumenthal RS, Resar JR, Zacur HA, Gerstenblith G. Ethinyl estradiol acutely attenuates abnormal vasculation responses to acetylcholine in postmenopausal women. Circulation 1994;89:52–60.

    PubMed  CAS  Google Scholar 

  70. RITA-2 trial participants. Coronary angioplasty versus medical therapy for angina: the second randomised intervention treatment of angina (RITA-2) trial. Lancet 1997;350:461–8.

    Article  Google Scholar 

  71. Rodrigo E, Maeso R, Navvarro-cid J, Ruilope LM, Cachofeiro V, Lahera V. Endothelial dysfunction in spontaneusly hypertensive rats: consequences of chronic treatment with losartan or captopril. J Hypertens 1997;15:613–8.

    Article  PubMed  CAS  Google Scholar 

  72. Roskamm H. Lipidoptimierung in der Sekundär- und Primär-prävention — Gibt es nach 4S, WOS und CARE noch Zweifel? Z Kardiol 1996;85:895–8.

    PubMed  CAS  Google Scholar 

  73. Rutherford JD, Pfeffer MA, Moyé LA, et al. Effects of captopril on ischemic events after myocardial infarction: results of the Survival and Ventricular Enlargement Trial. Circulation 1994;90: 1731–8.

    PubMed  CAS  Google Scholar 

  74. Schächinger V, Zeiher AM. Alterations of coronary blood flow and myocardial perfusion in hypercholesterolemia. Heart 1996;76: 295–8.

    Article  PubMed  Google Scholar 

  75. Schächinger V, Zeiher AM. Bedeutung des Endothels für die koronare Tonusregulation. Z Kariol 1996;83:263–7.

    Google Scholar 

  76. Schächinger V, Zeiher AM. NO in der Therapie der Angina pectoris: Nitrate oder Molsidomin? Internist (Berlin) 1997;38: 438–47.

    Article  Google Scholar 

  77. Schlaifer JD, Wargovick TJ, O’Neill B, et al. on behalf of the TREND investigators. Effects of quinapril on coronary blood flow in coronary artery disease patients with endothelial dysfunction. Am J Cardiol 1997;80:1594–7.

    Article  PubMed  CAS  Google Scholar 

  78. Schuler G, Hambrecht R, Schlierf G, et al. Regular physical exercise and low-fat diet. Effects on progression of coronary artery disease. Circulation 1992;86:1–11.

    PubMed  CAS  Google Scholar 

  79. Sirtori CR, Franceschini G. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. N Engl J Med 1997;337:1918.

    Article  PubMed  CAS  Google Scholar 

  80. Solzbach U, Hornig B, Jeserich M, Just H. Vitamin C improves endothelial dysfunction of epicardial coronary arteries in hypertensive patients. Circulation 1997;96:1513–9.

    PubMed  CAS  Google Scholar 

  81. Steinberg HO, Bayazeed B, Hook G, Johnson A, Cronin J, Baron AD. Endothelial dysfunction is associated with cholesterol levels in the high normal range in humans. Circulation 1997;96: 3287–93.

    PubMed  CAS  Google Scholar 

  82. Stephens NG, Parson A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996;347:781–6.

    Article  PubMed  CAS  Google Scholar 

  83. Sudhir K, Chou TM, Hutchison SJ, Chatterjee K. Coronary vasodilation induced by angiotensin-converting enzyme inhibition in vivo — Differential contribution of nitric oxide and bradykinin in conductance and resistance arteries. Circulation 1996;93:1734–9.

    PubMed  CAS  Google Scholar 

  84. Tamai O, Matsuoka H, Nishida H, et al. Single LDL-apharesis improves endothelium-dependent vasodilation in hypercholesterolemic humans. Circulation 1997;95:76–82.

    PubMed  CAS  Google Scholar 

  85. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1996;97:22–8.

    Article  PubMed  CAS  Google Scholar 

  86. Ting HH, Timimi FK, Haley EA, Roddy MA, Ganz P, Craeger MA. Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation 1997;95:2617–22.

    PubMed  CAS  Google Scholar 

  87. Treasure CB, Klein JL, Weintraub WS, et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995;332: 481–7.

    Article  PubMed  CAS  Google Scholar 

  88. Vallence P, Collier J, Bhagat K. Infection, inflammation, and infarction: does acute endothelial dysfunction provide a link. Lancet 1997;349:1391–2.

    Article  Google Scholar 

  89. Vaughan CJ, Murphy MB, Buckley BM. Statins do more than just lower cholesterol. Lancet 1996;348:1079–82.

    Article  PubMed  CAS  Google Scholar 

  90. Wever RM, Lüscher TF, Cosentino F, Rabelink T. Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 1998;97:108–12.

    PubMed  CAS  Google Scholar 

  91. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 1998;17:2479–88.

    Google Scholar 

  92. Williams JK, Adams MR. Estrogens, progestins and coronary artery reactivity. Certain progestins may oppose the favorable effect of estrogen on the cardiovascular system of postmenopausal women. Nature Med 1997;3:273–4.

    Article  PubMed  CAS  Google Scholar 

  93. Yang Z, Richard D, Segesser L von et al. Treshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotoni in human arteries: a new mechanism of vasospasm? Circulation 1990;82:188–95.

    PubMed  CAS  Google Scholar 

  94. Yusuf S, Pepine CJ, Garaces C, et al. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 1992;340:1173–8.

    Article  PubMed  CAS  Google Scholar 

  95. Zeiher AM. Endothelial vasodilator dysfunction: pathogenetic link to myocardial ischemia or epiphenomen. Lancet 1996;348: s10–2.

    Article  Google Scholar 

  96. Zeiher AM, Drexler H, Wollschläger H, Saurbier B, Just H. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 1989;14:1181–90.

    Article  PubMed  CAS  Google Scholar 

  97. Zeiher AM, Krause T, Schächinger V, Minners J, Moser E. Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation 1995;91:2345–52.

    PubMed  CAS  Google Scholar 

  98. Zeiher AM, Schächinger V. Coronary endothelial vasodilator dysfunction: clinical relevance and therapeutic implications. Z Kardiol 1994;83:Suppl 4:7–14.

    PubMed  Google Scholar 

  99. Zeiher AM, Schächinger V, Minners J. Long-term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation 1995;92:1094–100.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schächinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schächinger, V. Therapeutische Optionen zur Verbesserung der Myokardperfusion bei koronarer Atherosklerose. Herz 23, 116–129 (1998). https://doi.org/10.1007/BF03044542

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044542

Schlüsselwörter

Key Words

Navigation