Skip to main content
Log in

Methoden der funktionellen Koronardiagnostik

Methods of coronary functional assessment

  • Koronare Atherosklerose — Funktionelle Konsequenzen
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die funktionelle Koronardiagnostik befaßt sich mit dynamischen Veränderungen des koronaren Lumens und der Gefäßwand, des koronaren Blutflusses, intrakoronarer Drücke sowie der myokardialen Perfusion in Abhängigkeit von definierten pharmakologischen Interventionen. Die erhobenen Daten dienen einerseits der Charakterisierung physiologischer Regulationsmechanismen, andererseits der Aufdeckung pathophysiologischer Vorgänge und der Entwicklung therapeutischer Ansätze, insbesondere im Hinblick auf die Entstehung der koronaren Arteriosklerose. Hierzu bedient sie sich einer Reihe direkter (invasiver) und indirekter (nichtinvasiver) Untersuchungsverfahren. In die erste Gruppe fallen intrakoronare Doppler-Flußmessung, koronare Druckmessung, quantitative Koronarangiographie sowie intravaskulärer Ultraschall. In die zweite Gruppe fallen koronare Doppler-Echokardiographie, Positronenemissionstomographie, Myokardszintigraphie sowie Magnetresonanzbildgebung. Die verschiedenen Verfahren ergänzen einander aufgrund unterschiedlicher zugrundeliegender technischer und physiologischer Prinzipien. Die kombinierte koronarinvasive Funktionsuntersuchung im Herzkatheterlabor bietet die Möglichkeit einer simultanen Betrachtung von hochauflösender bildgebender Diagnostik und direkten physiologischen Messungen unter lokaler Applikation von Testsubstanzen. Der hohe zeitliche und apparative Aufwand sowie die notwendige Erfahrung des Untersuchers beschränken diese Methodik jedoch auf spezialisierte Zentren. Neben der Anwendung im Rahmen der grundlagenorientierten Forschung haben funktionelle Methoden mittlerweile auch Einzug in die klinische Routine gehalten und finden Verwendung unter anderem zur Evaluierung der hämodynamischen Wirksamkeit von Koronarveränderungen sowie der Erfolgskontrolle nach therapeutischen Interventionen im Herzkatheterlabor. Die Prinzipien und Einsatzmöglichkeiten der verschiedenen Methoden sowie ausgewählte Befunde werden dargestellt.

Summary

Functional evaluation of coronary vasomotion encompasses the assessment of dynamic changes in coronary lumen, vessel wall, blood flow, intracoronary pressure and myocardial perfusion in response to specific pharmacologic stimuli. These parameters are obtained to characterize mechanisms of physiologic regulation and to evaluate pathophysiologic processes and potential therapeutic strategies, especially with regard to the development of coronary atherosclerosis. To this end, a variety of direct (invasive) and indirect (non-invasive) diagnostic tools are employed. Among the invasive methods are registration of intracoronary Doppler flow, coronary pressure measurements, quantitative coronary angiography and intravascular ultrasound. The non-invasive modalities consist of coronary Doppler echocardiography, positron emission tomography, myocardial scintigraphy and magnetic resonance imaging. Because of the different technical and physiological principles involved, these methods are complementary by providing independent access to different aspects. The combined invasive functional testing as employed in the cardiac catheterization laboratory allows for a simultaneous synopsis of high-resolution coronary imaging and direct measurement of physiologic parameters during local application of defined pharmacologically active substances. However, the demands in terms of equipment, time and operator skills are high and limit this combined invasive approach to spezialized centers. Besides these research purposes, a number of functional methods has entered the clinical arena. They are employed to evaluate the hemodynamic significance of coronary lesions and to assess functional outcome of therapeutic interventions in the catheterization laboratory. The underlying principles and applications of the different methods are described and an overview of selected results is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Agati L, Voci P, Autore C, et al. Combined use of dobutamine echocardiography and myocardial contrast echocardiography in predicting regional dysfunction recovery after coronary revascularization in patients with recent myocardial infarction. Eur Heart J 1997;18:771–9.

    PubMed  CAS  Google Scholar 

  2. Bach RG, Donohue TJ, Caracciolo EA, Wolford T, Aguirre FV, Kern MJ. Quantification of collateral blood flow during PTCA by intravascular Doppler. Eur Heart J 1995;16:Suppl J:74–7.

    PubMed  Google Scholar 

  3. Bartunek J, Marwick TH, Rodrigues AC, et al. Dobutamine-induced wall motion abnormalities: correlations with myocardial fractional flow reserve and quantitative coronary angiography. J Am Coll Cardiol 1996;27:1429–36.

    Article  PubMed  CAS  Google Scholar 

  4. Bartunek J, Sys SU, Heyndrickx GR, Pijls NH, de Bruyne B. Quantitative coronary angiography in predicting functional significance of stenoses in an unselected patient cohort. J Am Coll Cardiol 1995;26:328–34.

    Article  PubMed  CAS  Google Scholar 

  5. Bartunek J, Van Schuerbeeck E, de Bruyne B. Comparison of exercise electrocardiography and dobutamine echocardiography with invasively assessed myocardial fractional flow reserve in evaluation of severity of coronary arterial narrowing. Am J Cardiol 1997;79:478–81.

    Article  PubMed  CAS  Google Scholar 

  6. Berglund H, Luo H, Nishioka T, et al. Highly localized arterial remodeling in patients with coronary atherosclerosis: an intravascular ultrasound study. Circulation 1997;96:1470–6.

    PubMed  CAS  Google Scholar 

  7. Caiati C, Aragona P, Iliceto S, Rizzon P. Improved Doppler detection of proximal left anterior descending coronary artery stenosis after intravenous injection of a lung-crossing contrast agent: a transesophageal Doppler echocardiographic study. J Am Coll Cardiol 1996;27:1413–21.

    Article  PubMed  CAS  Google Scholar 

  8. Celermajer DS. Endothelial dysfunction: does it matter? Is it reversible? J Am Coll Cardiol 1997;30:325–33.

    Article  PubMed  CAS  Google Scholar 

  9. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 1986;251:H779–86.

    PubMed  CAS  Google Scholar 

  10. Chou TM, Sudhir K, Amidon TM et al. Comparison of adenosine to dipyridamole in degree of coronary hyperemic response in heart transplant recipients. Am J Cardiol 1996;78:908–13.

    Article  PubMed  CAS  Google Scholar 

  11. Chou TM, Sudhir K, Iwanaga S, Chatterjee K, Yock PG. Measurement of volumetric coronary blood flow by simultaneous intravascular two-dimensional and Doppler ultrasound: validation in an animal model. Am Heart J 1994;128:237243.

    Google Scholar 

  12. Colombo A, Hall P, Nakamura S, et al. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 1995;91:1676–88.

    PubMed  CAS  Google Scholar 

  13. Cornel JH, Bax JJ, Fioretti P, et al. Prediction of improvement of ventricular function after revascularization: 18-F-fluorodeoxyglucose single-photon emission computed tomography vs lowdose dobutamine echocardiography. Eur Heart J 1997;18:941–8.

    PubMed  CAS  Google Scholar 

  14. Crnac J, Schmidt MC, Theissen P, Sechtem U. Assessment of myocardial perfusion by magnetic resonance imaging. Herz 1997;22:16–28.

    Article  PubMed  CAS  Google Scholar 

  15. Crowley JJ, Dardas PS, Harcombe AA, Shapiro LM. Transthoracic Doppler echocardiographic analysis of phasic coronary blood flow velocity in hypertrophic cardiomyopathy. Heart 1997;77:558–63.

    PubMed  CAS  Google Scholar 

  16. Crowley JJ, Shapiro LM. Transthoracic echocardiographic measurement of coronary blood flow and reserve. J Am Soc Echocard 1997;10:337–43.

    Article  CAS  Google Scholar 

  17. Czernin J, Sun K, Brunken R, Bottcher M, Phelps M, Schelbert H. Effect of acute and long-term smoking on myocardial blood flow and flow reserve. Circulation 1995;91:2891–7.

    PubMed  CAS  Google Scholar 

  18. de Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproductibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation 1996;94:1842–9.

    PubMed  Google Scholar 

  19. Dorsaz PA, Doriot PA, Dorsaz L, Chatelain P, Rutishauser W. A new densitometric approach to the assessment of mean coronary flow. Invest Radiol 1997;32:198–204.

    Article  PubMed  CAS  Google Scholar 

  20. Doucette JW, Corl PD, Payne HM, et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992;85:1899–1911.

    PubMed  CAS  Google Scholar 

  21. Escaned J, Baptista J, Di Mario C, et al. Significance of automated stenosis detection during quantitative angiography. Insights gained from intracoronary ultrasound imaging. Circulation 1996;94:966–72.

    PubMed  CAS  Google Scholar 

  22. Finocchiaro ML, Buffon A, Beltrame JF, et al. Differences in vasodilatory response to dipyridamole between patients with angina and normal coronary arteries and patients with successful coronary angioplasty. Coronary Artery Dis 1995;6:479–87.

    CAS  Google Scholar 

  23. Fitzgerald PJ, St. Goar FG, Conolly AJ, et al. Intravascular ultrasound imaging of coronary arteries: is three layers th norm? Circulation 1992;86:154–8.

    PubMed  CAS  Google Scholar 

  24. Glagov S, Weisenberg E, Zarins CK, Stankunavicurs R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371–5.

    PubMed  CAS  Google Scholar 

  25. Görge G, Ge J, Haude M. Intravascular ultrasound for evaluation of coronary arteries. Herz 1996;21:78–89.

    PubMed  Google Scholar 

  26. Gould KL, Martucci JP, Goldberg DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. A potential noninvasive marker of healing coronary endothelium. Circulation 1994;89:1530–8.

    PubMed  CAS  Google Scholar 

  27. Gussenhoven EJ, Geselschap JH, van Lankeren, W, Posthuma DJ, Van der L. Remodeling of atherosclerotic coronary arteries assessed with intravascular ultrasound in vitro. Am J Cardiol 1997;79:699–702.

    Article  PubMed  CAS  Google Scholar 

  28. Hamm CW, Meinertz T, Dix WR, et al. Intravenous coronary angiography with dichromography using synchrotron radiation. Herz 1996;21:127–31.

    PubMed  CAS  Google Scholar 

  29. Haude M, Caspari G, Baumgart D, Spiller P, Heusch G, Erbel R. Neue Entwicklungen der parameterorientierten röntgendensitometrischen Perfusionsanalyse im Rahmen von Herzkatheteruntersuchungen. Herz 1997;22:72–86.

    Article  PubMed  CAS  Google Scholar 

  30. Hausleiter J, Jost S, Nolte CW, et al. Comparative in-vitro validation of eight firs- and second-generation quantitative coronary angiography systems. Coronary Artery Dis 1997;8:83–90

    Article  CAS  Google Scholar 

  31. Hausmann D, Erbel R, Alibelli-Chemarin MJ, et al. The safety of intracoronary ultrasound. A multicenter survey of 2207 examinations. Circulation 1995;91:623–30.

    PubMed  CAS  Google Scholar 

  32. Hausmann D, Johnson JA, Sudhir K, et al. Angiographically silent atherosclerosis detected by intravascular ultrasound in patients with familial hypercholesterolemia and familial combined hyperlipidemia: correlation with high density lipoproteins. J Am Coll Cardiol 1996;27:1562–70.

    Article  PubMed  CAS  Google Scholar 

  33. Hausmann D, Lundkvist AJ, Friedrich G, Sudhir K, Fitzgerald PJ, Yock PG. Lumen and plaque shape in atherosclerotic coronary arteries assessed by in vivo intracoronary ultrasound. Am J Cardiol 1994;74:857–63.

    Article  PubMed  CAS  Google Scholar 

  34. Hausmann D, Lundkvist AJ, Friedrich GJ, Mullen WL, Fitzgerald PJ, Yock PG. Intracoronary ultrasound imaging: intraobserver and interobserver variability of morphometric measurements. Am Heart J 1994;128:674–80.

    Article  PubMed  CAS  Google Scholar 

  35. Heller LI, Cates C, Popma J, et al. Intracoronary Doppler assessment of moderate coronary artery disease: comparison with 201T1 imaging and coronary angiography. FACTS Study Group. Circulation 1997;96:484–90.

    PubMed  CAS  Google Scholar 

  36. Hiro T, Leung CY, Russo RJ, Karimi H, Farvid AR, Tobis JM. Variability of a three-layered appearance in intravascular ultrasound coronary images: a comparison of morphometric measurements with four intravascular ultrasound systems. Am J Card Imag 1996;10:219–27.

    CAS  Google Scholar 

  37. Hodgson JM, Graham SP, Savakus AD, et al. Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. J Card Imag 1989;4:189–193.

    Google Scholar 

  38. Hodgson JM, Reddy KG, Suneja R, Nair R, Lesnefsky EJ, Sheehan HM. Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993;21:35–44.

    PubMed  CAS  Google Scholar 

  39. Iliceto S, Marangelli V, Memmola C, Rizzon P. Transesophageal Doppler echocardiography evaluation of coronary blood flow velocity in baseline conditions and during dipyridamole-induced coronary vasodilation. Circulation 1991;83:61–9.

    PubMed  CAS  Google Scholar 

  40. Isaaz K, Bruntz JF, Paris D, Ethevenot G, Aliot E. Abnormal coronary flow velocity pattern in patients with left ventricular hypertrophy, angina pectoris, and normal coronary arteries: a transesophageal Doppler echocardiographic study. Am Heart J 1994;128:500–10.

    Article  PubMed  CAS  Google Scholar 

  41. Jayaweera AR, Kaul S. Quantifying myocardial blood flow with contrast echocardiography. Am J Card Imag 1993;7:317–35.

    CAS  Google Scholar 

  42. Kaufmann P, Mandinov L, Hess OM. Coronary stenosis vasoconstriction: impact on myocardial ischemia. Eur Heart J 1997;18:1853–9.

    PubMed  CAS  Google Scholar 

  43. Keane D, Haase J, Slager CJ, et al. Comparative validation of quantitative coronary angiography systems. Results and implications from a multicenter study using a standardized approach. Circulation 1995;91:2174–83.

    PubMed  CAS  Google Scholar 

  44. Keijer JT, van Rossum AC, van Eenige MJ, et al. Semiquantitation of regional myocardial blood flow in normal human subjects by first-pass magnetic resonance imaging. Am Heart J 1995;130:893–901.

    Article  PubMed  CAS  Google Scholar 

  45. Kenny A, Wisbey CR, Shapiro LM. Profiles of coronary blood flow velocity in patients with aortic stenosis and the effect of valve replacement: a transthoracic echocardiographic study. Br Heart J 1994;71:57–62.

    Article  PubMed  CAS  Google Scholar 

  46. Kern MJ, Aguirre FV, Tatineni S, et al. Enhanced coronary blood flow velocity during intraaortic balloon counterpulsation in critically ill patients. J Am Coll Cardiol 1993;21:359–68.

    PubMed  CAS  Google Scholar 

  47. Kern MJ, Bach RG, Mechem CJ, et al. Variations in normal cornonary vasodilatory reserve stratified by artery, gender, heart transplantation and coronary artery disease. J Am Coll Cardiol 1996;28:1154–60.

    Article  PubMed  CAS  Google Scholar 

  48. Kern MJ, de Bruyne B, Pijls NH. From research to clinical practice: current role of intracoronary physiologically based decision making in the cardiac catheterization laboratory. J Am Coll. Cardiol 1997;30:613–20.

    Article  PubMed  CAS  Google Scholar 

  49. Kern MJ, Deligonul U, Serota H, Gudipati C, Buckingham. Ventricular arrhythmia due to intracoronary papaverine: analysis of QT intervals and coronary vasodilatory reserve. Cathet Cardiovasc Diagn 1990;19:229–36.

    Article  PubMed  CAS  Google Scholar 

  50. Kern MJ, Deligonul U, Tatineni S, Serota H, Aguirre F, Hilton TC. Intravenous adenosine: continuous infusion and low dose bolus administration for determination of coronary vasodilator reserve in patients with and without coronary artery disease. J Am Coll Cardiol 1991;18:718–29.

    PubMed  CAS  Google Scholar 

  51. Kern MJ, Donohue TJ, Aguirre FV, et al. Assessment of angiographically intermediate coronary artery stenosis using the Doppler flowire. Am J Cardiol 1993;71:26D-33D.

    Article  PubMed  CAS  Google Scholar 

  52. Kern MJ, Donohue TJ, Aguirre FV, et al. Clinical outcome of deferring angioplasty in patients with normal translesional pressureflow velocity measurement. J Am Coll Cardiol 1995;25:178–87.

    Article  PubMed  CAS  Google Scholar 

  53. Kern MJ, Dupouy P, Drury JH, et al. Role of coronary artery lumen enlargement in improving coronary blood flow after balloon angioplasty and stenting: a combined intravascular ultrasound Doppler flow and imaging study. J Am Coll Cardiol 1997;29:1520–7.

    Article  PubMed  CAS  Google Scholar 

  54. Klein JL, Boccuzzi SJ, Treasure CB, et al. Performance standards and edge detection with computerized quantitative coronary arteriography. The Lovastatin Restenosis Trial Group. Am J Cardiol 1996;77:815–22.

    Article  PubMed  CAS  Google Scholar 

  55. Klues HG, Schwarz ER, vom Dahl J, et al. Disturbed intracoronary hemodynamics in myocardial bridging: early normalization by intracoronary stent placement. Circulation 1997;96:2905–13.

    PubMed  CAS  Google Scholar 

  56. Kozakova M, Palombo C, Pratali L, et al. Assessment of coronary reserve by transoesophageal Doppler echocardiography. Direct comparison between different modalities of dipyridamole and adenosine administration. Eur Heart J 1997;18:514–23.

    PubMed  CAS  Google Scholar 

  57. Kozakova M, Palombo C, Pratali I, Pittella G, Galetta F, L’Abbate A. Mechanisms of coronary flow reserve impairment in human hypertension. An integrated approach by transthoracic and transesophageal echocardiography. Hypertension 1997;29:551–9.

    PubMed  CAS  Google Scholar 

  58. Krahwinkel W, Ketteler T, Godke J, et al. Dobutamine stress echocardiography. Eur Heart J 1997;18:Suppl D:D9–15.

    PubMed  CAS  Google Scholar 

  59. Krahwinkel W, Ketteler T, Wolfertz J, et al. Detection of myocardial viability using stress echocardiography. Eur Heart J 1997;18: Suppl D:D111–6.

    PubMed  Google Scholar 

  60. Kranidis A, Zamanis N, Mitrakou A, et al. Coronary microcirculation evaluation with transesophageal echocardiography Doppler in type II diabetics. Int J Cardiol 1997;59:119–24.

    Article  PubMed  CAS  Google Scholar 

  61. Leischik R, Rose J, Caspari G, Skyschally A, Heusch G, Erbel R. Contrast echocardiography for assessment of myocardial perfusion Herz 1997;22:40–50.

    Article  PubMed  CAS  Google Scholar 

  62. Li D, Dhawale P, Rubin PJ, Haacke EM, Gropler RJ. Myocardial signal response to dipyridamole and dobutamine: demonstration of the BOLD effect using a double-echo gradient-echo sequence. Magn Resonance Med 1996;36:16–20.

    Article  CAS  Google Scholar 

  63. Ludmer PJ, Selwyn AP, Shook TL. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986;315:1046.

    PubMed  CAS  Google Scholar 

  64. Lupi A, Buffon A, Finocchiaro ML, Conti E, Maseri A, Crea F. Mechanisms of adenosine-induced epicardial coronary artery dilatation. Eur Heart J 1997;18:614–7.

    PubMed  CAS  Google Scholar 

  65. Marwick TH. Adenosine echocardiography in the diagnosis of coronary artery disease. Eur Heart J 1997;18:Suppl D:D31–6.

    PubMed  CAS  Google Scholar 

  66. Marwick TH. Use of stress echocardiography for the prognostic assessment of patients with stable chronic coronary artery disease. Eur Heart J 1997;18:Suppl D:D97–101.

    PubMed  Google Scholar 

  67. McGinn AL, White CW, Wilson RF. Interstudy variability of coronary flow reserve. Influence of heart rate, arterial pressure, and ventricular preload. Circulation 1990;81:1319–30.

    PubMed  CAS  Google Scholar 

  68. Mechem CJ, Kern MJ, Aguirre FV, Caulev M, Stonner T. Safety and outcome of angioplasty guidewire Doppler instrumentation in patients with normal or mildly diseased coronary arteries. Circulation 1992;86:1–323.

    Google Scholar 

  69. Meissner A, Lins M, Herrmann G, Simon R. Multiple coronary artery-left ventricular fistulae: haemodynamic quantification by intracoronary Doppler ultrasound. Heart 1997;78:91–3.

    PubMed  CAS  Google Scholar 

  70. Miller DD, Donohue TJ, Wolford TL, Kern MJ, Bergmann SR. Assessment of blood flow distal to coronary artery stenoses. Correlations between myocardial positron emission tomography and poststenotic intracoronary Doppler flow reserve. Circulation 1996;94:2447–54.

    PubMed  CAS  Google Scholar 

  71. Mohiaddin RH, Gatehouse PD, Henien M, Firmin DN. Cine MR Fourier velocimetry of blood flow through cardiac valves: comparison with Doppler echocardiography. J Magn Resonance Imag 1997;7:657–63.

    Article  CAS  Google Scholar 

  72. Mudra H, Klauss V, Werner F, Regar E, Henneke KH, Theisen K. Anwendung und Bedeutung der intravaskulären Ultraschallbildgebung bei Koronarinterventionen. Z Kardiol 1996;85:Suppl 1: 39–47.

    PubMed  Google Scholar 

  73. Nienaber CA, Carnarius H. Thalliumszintigraphie zum Nachweis von vitalem Myokard. Beurteilung von „stunned and hybernating myocardium”. Herz 1994;19:7–18.

    PubMed  CAS  Google Scholar 

  74. Nishimura RA, Edwards WD, Warnes CA, et al. Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J Am Coll Cardiol 1990;16:145–54.

    PubMed  CAS  Google Scholar 

  75. Nissen SE, De Franco AC, Tuzcu EM, Moliterno DJ. Coronary intravascular ultrasound: diagnostic and interventional applications. Coronary Artery Dis 1995;6:355–67.

    Article  CAS  Google Scholar 

  76. Penny WF, Rockman H, Long J, et al. Heterogeneity of vasomotor response to acetylcholine along the human coronary artery. J Am Coll Cardiol 1995;25:1046–55.

    Article  PubMed  CAS  Google Scholar 

  77. Picano E, Lattanzi F, Sicari R, et al. Role of stress echocardiography in risk stratification early after an acute myocardial infarction. EPIC (Echo Persantin International Cooperative) Study Groups. Eur Heart J 1997;18:Suppl D:D78–85.

    PubMed  Google Scholar 

  78. Picano E, Ostojic M, Sicari R, Baroni M, Cortigiani L, Pingitore A. Dipyridamole stress echocardiography: state of the art 1996. EPIC (Echo Persantin International Cooperative) Study Group. Eur Heart J 1997;18:Suppl D:D16–23.

    PubMed  CAS  Google Scholar 

  79. Pierard LA, Lancellotti P, Benoit T. Myocardial viability. Stress echocardiography vs nuclear medicine. Eur Heart J 1997;18: Suppl D:D117–23.

    PubMed  Google Scholar 

  80. Pijls NH, Bech GJ, de Bruyne B, van Straten A. Clinical assessment of functional stenosis severity: use of coronary pressure measurements for the decision to bypass a lession. Ann Thorac Surg 1997;63:S6–11.

    Article  Google Scholar 

  81. Pijls NH, Bech GJ, el Gamal MI, et al. Quantification of recruitable coronary collateral blood flow in conscious humans and its potential to predict future ischemic events. J Am Coll Cardiol 1995;25:1522–8.

    Article  PubMed  CAS  Google Scholar 

  82. Pijls NH, de Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996;334:1703–8.

    Article  PubMed  CAS  Google Scholar 

  83. Pijls NH, van Gelder B, Van der Voort P, et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 1995;92:3183–93.

    PubMed  CAS  Google Scholar 

  84. Pijls NH, van Son JA, Kirkeeide RL, de Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993;87:1354–67.

    PubMed  CAS  Google Scholar 

  85. Potkin BN, Bartorelli AL, Gessert JM, et al. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 1990;81:1575–85.

    PubMed  CAS  Google Scholar 

  86. Quyyumi AA, Dakak N, Andrews NP, Gilligan DM, Panza JA, Cannon RO III. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation 1995;92:320–6.

    PubMed  CAS  Google Scholar 

  87. Quyyumi AA, Dakak N, Andrews NP, et al. Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J Clin Invest 1995;95:1747–55.

    Article  PubMed  CAS  Google Scholar 

  88. Redberg RF, Sobol Y, Chou TM, et al. Adenosine-induced coronary vasodilation during transesophageal Doppler echocardiography. Rapid and safe measurement of coronary flow reserve ratio can predict significant left anterior descending coronary stenosis. Circulation 1995;92:190–6.

    PubMed  CAS  Google Scholar 

  89. Rienmuller R, Baumgartner C, Kern R, et al. Quantitative Bestimmung der linksventrikulären Myokardperfusion mittels EBCT. Herz 1997;22:63–71.

    Article  PubMed  CAS  Google Scholar 

  90. Rovai D, DeMaria AN, L’Abbate A. Myocardial contrast echo effect: the dilemma of coronary blood flow and volume. J Am Coll Cardiol 1995;26:12–7.

    Article  PubMed  CAS  Google Scholar 

  91. Rovai D, Ferdeghini EM, Mazzarisi A, et al. Quantitative aspects in myocardial contrast echocardiography. Eur Heart J 1995;16:Suppl J:42–5.

    PubMed  Google Scholar 

  92. Rovai D, Lombardi M, Ghelardini G, et al. Discordance between responses of contrast echo intensity to increased flow rate in human coronary circulation and in vitro. Am Heart J 1992;124:398–404.

    Article  PubMed  CAS  Google Scholar 

  93. Schachinger V, Zeiher AM. Quantitative assessment of coronary vasoreactivity in humans in vivo. Importance of baseline vasomotor tone in atherosclerosis. Circulation 1995;92:2087–94.

    PubMed  CAS  Google Scholar 

  94. Scheidegger MB, Stuber M, Boesiger P, Hess OM. Coronary artery imaging by magnetic resonance. Herz 1996;21:90–6.

    PubMed  CAS  Google Scholar 

  95. Schulman DS, Lasorda D, Farah T, Soukas P, Reichek N, Joye JD. Correlations between coronary flow reserve measured with a Doppler guide wire and treadmill exercise testing. Am Heart J 1997;134:99–104.

    Article  PubMed  CAS  Google Scholar 

  96. Schwaiger M. Myocardial perfusion imaging with PET. J Nucl Med 1994;35:693–8.

    PubMed  CAS  Google Scholar 

  97. Schwaiger M, Hutchins G. Quantification of regional myocardial perfusion by PET: rational and first clinical results. Eur Heart J 1995;16:Suppl J:84–91.

    PubMed  Google Scholar 

  98. Schwarz ER, Klues HG, vom Dahl J, Klein I, Krebs W, Hanrath P. Functional, angiographic and intracoronary Doppler flow characteristics in symptomatic patients with myocardial bridging: effect of short-term intravenous beta-blocker medication. J Am Coll Cardiol 1996;27:1637–45.

    Article  PubMed  CAS  Google Scholar 

  99. Serruys PW, Di Mario C, Meneveau N, et al. Intracoronary pressure and flow velocity with sensor-tip guidewires: a new methodologic approach for assessment of coronary hemodynamics before and after coronary interventions. Am J Cardiol 1993;71:41D-53D.

    Article  PubMed  CAS  Google Scholar 

  100. Serruys PW, Di Mario C, Piek JJ, et al. Prognostic value of intracoronary flow velocity and diameter stenosis in assessing the short- and long-term outcomes of coronary balloon angioplasty. Circulation 1997;96:3369–77.

    PubMed  CAS  Google Scholar 

  101. Sheikh KH, Harrison JK, Harding MB, et al. Detection of angiographically silent coronary atherosclerosis by intracoronary ultrasonography. Am Heart J 1991;121:1803–07.

    Article  PubMed  CAS  Google Scholar 

  102. Siostrzonek P, Kranz A, Heinz G, et al. Noninvasive estimation of coronary flow reserve by transesophageal Doppler measurement of coronary sinus flow. Am J Cardiol 1993;72:1334–7.

    Article  PubMed  CAS  Google Scholar 

  103. Smits P, Williams SB, Lipson DE, Banitt P, Rongen GA, Creager MA. Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation 1995;92:2135–41.

    PubMed  CAS  Google Scholar 

  104. Stiel GM, Lund GK, Schaps KP, Lattermann A, Nienaber CA. Visuelle Einschätzung oder quantitative Vermessung von Koronarstenosen: Bedeutung für die „prima-vista”-PTCA. Z Kardiol 1997;86:189–95.

    Article  PubMed  CAS  Google Scholar 

  105. Stoddard MF, Prince CR, Morris GT. Coronary flow reserve assessment by dobutamine transesophageal Doppler echocardiography. J Am Coll Cardiol 1995;25:325–32.

    Article  PubMed  CAS  Google Scholar 

  106. Sudhir K, MacGregor JS, Barbant SD, et al. Assessment of coronary conductance and resistance vessel reactivity in response to nitroglycerin, ergonovine and adenosine: in vivo studies with simultaneous intravascular two-dimensional and Doppler ultrasound. J Am Coll Cardiol 1993;21:1261–8.

    Article  PubMed  CAS  Google Scholar 

  107. Ten Cate FJ, Silverman PR, Sassen LM, Verdouw PD. Can myocardial contrast echo determine coronary flow reserve? Cardiovasc Res 1992;26:32–9.

    Article  PubMed  Google Scholar 

  108. ten Hoff H, Korbijn A, Smit TH, et al. Imaging artifacts in mechanically driven ultrasound catheters. Int J Cardiac Imag 1989;4:195–9.

    Article  Google Scholar 

  109. Topol EJ, Nissen SE. Our preoccupation with coronary Iuminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995;92:2333–42.

    PubMed  CAS  Google Scholar 

  110. Treasure CB, Klein JL, Vita JA, et al. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 1993;87:86–93.

    PubMed  CAS  Google Scholar 

  111. Tron C, Donohue TJ, Bach RG, et al. Comparison of pressure-derived fractional flow reserve with poststenotic coronary flow velocity reserve for prediction of stress myocardial perfusion imaging results. Am Heart J 1995;130:723–33.

    Article  PubMed  CAS  Google Scholar 

  112. Tron C, Kern MJ, Donohue TJ, et al. Comparison of quantitative angiographically derived and measured translesion pressure and flow velocity in coronary artery disease. Am J Cardiol 1995;75:111–7.

    Article  PubMed  CAS  Google Scholar 

  113. Tuzcu EM, Hobbs RE, Rincon G, et al. Occult and frequent transmission of atherosclerotic coronary disease with cardiac transplantation. Insights from intravascular ultrasound. Circulation 1995;91:1706–13.

    PubMed  CAS  Google Scholar 

  114. Uren NG, Camici PG, Melin JA, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med 1995;36:2032–6.

    PubMed  CAS  Google Scholar 

  115. Uren NG, Melin JA, de Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330: 1782–8.

    Article  PubMed  CAS  Google Scholar 

  116. van der Voort PH, van Hagen E, Hendrix G, van Gelder B, Bech JW, Pijls NH. Comparison of intravenous adenosine to intracoronary papaverine for calculation of pressure-derived fractional flow reserve. Cathet Cardiovasc Diagn 1996;39:120–5.

    Article  PubMed  Google Scholar 

  117. van Rossum AC, Post JC, Visser CA. Coronary imaging using MRI. Herz 1996;21:97–105.

    PubMed  Google Scholar 

  118. Vavuranakis M, Stefanadis C, Toutouzas K, Pitsavos C, Spanos V, Toutouzas P. Impaired compensatory coronary artery enlargement in atherosclerosis contributes to the development of coronary artery stenosis in diabetic patients. An in vivo intravascular ultrasound study. Eur Heart J 1997;18:1090–4.

    PubMed  CAS  Google Scholar 

  119. vom Dahl DJ. Untersuchung der Myokardperfusion mit der Positronen-Emissions-Tomographie: eine klinisch nützliche und valide Methode? Herz 1997;22:1–15.

    Article  Google Scholar 

  120. von Birgelen C, Mintz GS, de Feyter PJ, et al. Reconstruction and quantification with three-dimensional intracoronary ultrasound. An update on techniques, challenges, and future directions. Eur Heart J 1997;18:1056–67.

    Google Scholar 

  121. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 1997;204:373–84.

    PubMed  CAS  Google Scholar 

  122. Wilson RF, White CW. Intracoronary papaverine: An ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation 1986;73:444.

    PubMed  CAS  Google Scholar 

  123. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 1990;82:1595–1606.

    PubMed  CAS  Google Scholar 

  124. Wu CC, Feldman MD, Mills JD, et al. Myocardial contrast echocardiography can be used to quantify intramyocardial blood volume: new insights into structural mechanisms of coronary autoregulation. Circulation 1997;96:1004–11.

    PubMed  CAS  Google Scholar 

  125. Yamagishi M, Nissen SE, Booth DC, et al. Coronary reactivity to nitroglycerin: intravascular ultrasound evidence for the importance of plaque distribution. J Am Coll Cardiol 1995;25:224–30.

    Article  PubMed  CAS  Google Scholar 

  126. Yokoyama I, Murakami T, Ohtake T, et al. Reduced coronary flow reserve in familial hypercholesterolemia. J Nucl Med 1996;37:1937–42.

    PubMed  CAS  Google Scholar 

  127. Zehetgruber M, Mundigler G, Christ G, et al. Estimation of coronary flow reserve by transesophageal coronary sinus Doppler measurements in patients with syndrome X and patients with significant left coronary artery disease. J Am Coll Cardiol 1995;25:1039–45.

    Article  PubMed  CAS  Google Scholar 

  128. Zehetgrube M, Porenta G, Mundigler G, et al. Transesophageal versus intracoronary Doppler measurements for calculation of coronary flow reserve. Cardiovasc Res 1997;36:21–7.

    Article  Google Scholar 

  129. Zeiher AM. Endothelial vasodilator dysfunction: pathogenetic link to myocardial ischaemia or epiphenomenon? Lancet 1996;348:Suppl 1:S10–2.

    Article  Google Scholar 

  130. Zeiher AM, Drexler H, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993;92:652–62.

    Article  PubMed  CAS  Google Scholar 

  131. Zeiher AM, Drexler H, Wollschlager H, Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991;83:391–401.

    PubMed  CAS  Google Scholar 

  132. Zeiher AM, Krause T, Schachinger V, Minners J, Moser E. Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation 1995;91:2345–52.

    PubMed  CAS  Google Scholar 

  133. Zeiher AM, Schachinger V, Saurbier B, Just H. Assessment of endothelial modulation of coronary vasomotor tone: insights into a fundamental functional disturbance in vascular biology of atherosclerosis. Basic Res Cardiol 1994;89:Suppl 1:115–28.

    PubMed  Google Scholar 

  134. Zijlstra F, Juilliere Y, Serruys PW, Roelandt JR. Value and limitations of intracoronary adenosine for the assessment of coronary flow reserve. Cathet Cardiovasc Diagn 1988;15:76–80.

    Article  PubMed  CAS  Google Scholar 

  135. Zijlstra F, Reiber JH, Serruys PW. Does intracoronary papaverine dilate epicardial coronary arteries? Implications for the assessment of coronary flow reserve. Cathet Cardiovasc Diagn 1988;14:1–6.

    Article  PubMed  CAS  Google Scholar 

  136. Zijlstra F, Serruys PW, Hugenholtz PG. Papaverine: the ideal coronary vasodilator for investigating coronary flow reserve? A study of timing, magnitude, reproducibility, and safety of the coronary hyperemic response after intracoronary papaverine. Cathet Cardiovasc Diagn 1986;12:298–303.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Elsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsner, M. Methoden der funktionellen Koronardiagnostik. Herz 23, 78–96 (1998). https://doi.org/10.1007/BF03044539

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044539

Schlüsselwörter

Key Words

Navigation