Skip to main content
Log in

Reperfusionstherapie und mechanische Kreislauf-unterstützung bei Patienten mit kardiogenem Schock

Reperfusion therapy and mechanical circulatory support in cardiogenic shock

  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die Letalität bei Patienten mit kardiogenem Schock ist bei rein konservativ-medikamentöser Therapie extrem hoch: Sie liegt nach Literaturangaben in historischen Kollektiven bei mehr als 80%. Auch die thrombolytische Therapie hat bei Schockpatienten zu keiner eindeutigen Verbesserung der Prognose geführt. Durch die Koronarangioplastie kann nach bisher verfügbaren Daten die Prognose beim kardiogenen Schock hingegen wahrscheinlich günstig beeinflußt werden, was möglicherweise auf der mit diesem Verfahren sicher und schnell erreichbaren kompletten Rekanalisation des verscholossenen Koronargefäßes beruht.

Der Circulus vitiosus im kardiogenen Schock mit eingeschränkter Auswurfleistung, zunehmender Verschlechterung der energetischen Bilanz des Herzens und einer daraus resultierenden weiter zunehmenden Pumpschwäche kann mit Hilfe von aktiv pumpenden Unterstützungssystemen durch eine vorübergehende partielle oder komplette Übernahme der kardialen Pumpfunktion durchbrochen oder zumindest phasenweise überbrückt werden.

Folgende Kreislaufunterstützungssysteme stehen derzeit zur Verfügung: 1. intraaortale Ballongegenpulsation (IABP), 2. implantierbare Turbinenpumpe (Hemopumpe, HP), 3. perkutan applizierbarer kardiopulmonaler Bypass (PKB), 4. über Thorakotomie anschließbare Linksherz-, Rechtsherzoder biventrikuläre Bypass-Systeme, 5. intra- oder extrathorakale Kunstherzen. Von diesen Verfahren sind lediglich IABP, Hemopumpe und kardiopulmonaler Bypass perkutan implantierbar und so für einen schnellen Einsatz im Herzkatheterlabor, auf der Intensivstation und gegebenenfalls auch auf der Notaufnahmestation geeignet.

Die intraaortale Ballongegenpulsation (IABP) hat in den letzten Jahren im Bereich der Interventionskardiologie zunehmend an Bedeutung gewonnen. Mögliche Indikationen sind kardiogener Schock im Rahmen eines akuten Myokardinfarkts, Risiko-PTCA und instabile Angina pectoris. Neben einer Verbesserung der Hämodynamik und der myokardialen Energiebilanz kommt es nach neueren tierexperimentellen Befunden und ersten klinischen Untersuchungen unter IABP im kardiogenen Schock auch zu einer Verbesserung des Thrombolyseerfolgs. Vom Einsatz der IABP profitieren besonders solche Patienten, bei denen im kardiogenen Schock eine rasche Koronarrevaskularisation gelingt, und Patienten mit mechanischen Infarktkomplikationen, wie Mitralinsuffizienz und Ventrikelseptumdefekt. Wichtig ist grundsätzlich der möglichst frühzeitige Einsatz der IABP: Die Schockdauer bis zum Zeitpunkt der IABP-Implantation ist — unabhängig vom Revaskularisationserfolg — von eigenständiger prognostischer Bedeutung. Die Komplikationsrate der IABP hat in den letzten Jahren durch Verwendung dünnerer Kathetersysteme erheblich abgenommen; sie liegt bei Verwendung von 9,5-F-Kathetern und kurzer Pumpdauer (≤48 Stunden) niedriger als 5%. Grundsätzlich sind mit der IABP jedoch auch wesentlich längere Einsätze (von bis zu zwei bis vier Wochen) möglich.

Das perkutane Linksherz-Bypass-System Hemopumpe zeigte im Tierexperiment bei akuter Myokardischämie eindeutig myokardprotektive Effekte, klinisch liegen bisher jedoch nur wenige Erfahrungen — und zwar ausschließlich bei Patienten mit Risiko-PTCA — vor. Limitierend sind vor allem die geringe Förderleistung (maximal 2 l/min) sowie eine relativ hohe Komplikationsrate.

Im Gegensatz zu IABP und Hemopumpe ermöglicht der perkutan applizierbare kardiopulmonale Bypass (PKB) einen kompletten Kreislaufersatz. Das Verfahren ist daher besonders geeignet zur Überbrückung eines plötzlichen Herzstillstands. Bei therapierefraktärem Kreislaufstillstand können bei sofortigem Einsatz dieses Systems 20 bis 30% der Patienten gerettet werden. Ein Problem besteht allerdings in der bei PKB unter Herzstillstandbedingungen notwendigen simultanen linksventrikulären Entlastung. Darüber hinaus ist die Anwendungsdauer aufgrund der Dicke der Perfusionskanülen und der schädigenden Wirkung des Membranoxygenators auf die Blutpartikel auf wenige Stunden begrenzt.

Für die Interventionskardiologie stehen somit verschiedene perkutan einsetzbare Assist-Systeme zur Verfügung. Die Auswahl des Verfahrens hängt je nach klinischer Situation in erster Linie von der erforderlichen Pumpleistung ab. Bei Patienten mit kardiogenem Schock kommt der IABP unter den Assist-Systemen derzeit die bei weitem größte Bedeutung zu, in wenigen ausgewählten Fällen mit bestehendem oder drohendem kompletten Kreislaufstillstand kann der Einsatz eines perkutanen kardiopulmonalen Bypass-Systems erwogen werden.

Abstract

Cardiogenic shock is a state of inadequate tissue perfusion due to cardiac dysfunction, which is most commonly caused by acute myocardial infarction. The pathophysiology of cardiogenic shock is characterized by a downward spiral: ischemia causes myocardial dysfunction, which, in turn, augments the ischemic damage and the energetical imbalance. With conservative therapy, mortality rates for patients with cardiogenic shock are frustratingly high reaching more than 80%. Additional thrombolytic therapy has not been shown to significantly improve survival in such patients. Emergency cardiac catheterization and coronary angioplasty, however, seem to improve the outcome in shock-patients, which most probably is due to rapid and complete revascularization generally reached by angioplasty.

In addition to interventional therapy with rapid coronary revascularization, the use of mechanical circulatory support may interrupt the vicious cycle in cardiogenic shock by stabilizing hemodynamics and the metabolic situation. Different cardiac assist devices are available for cardiologists and cardiac surgeons: 1. intraaortic balloon counterpulsation (IABP), 2. implantable turbine-pump (HemopumpTM), 3. percutaneous cardiopulmonary bypass support (CPS), 4. right heart, left heart, or biventricular assist devices placed by thoracotomy, and 5. intra- and extrathoracic total artificial hearts. Since percutaneous application is possible with IABP, Hemopump and CPS, these devices are currently used in interventional cardiology.

The basic goals of the less invasive intraaortic balloon counterpulsation (IABP; Figure 1) are to stabilize circulatory collapse, to increase coronary perfusion and myocardial oxygen supply, and to decrease left ventricular workload and myocardial oxygen demand (Figure 2). Since the advent of percutaneous placement, IABP has been used by an increasing number of institutions (Figure 3). In addition to cardiogenic shock, the system may be of use in a variety of other indications in the catheterization laboratory and intensive care unit, including weaning from percutaneous cardiopulmonary bypass, in ischaemic left ventricular failure, in unstable angina, in high risk PTCA, and in prophylactic support in patients with myocardial infarction and successful revascularization. animal experimental data showed that IABP may improve success of thrombolysis and recent clinical data suggest that survival is enhanced and transfer for revascularization is facilitated when patients with myocardial infarction and cardiogenic shock undergo thrombolysis and IABP rather than thrombolysis alone. A lot of studies had demonstrated before, that combined use of counterpulsation and revascularization therapy (i. e. coronary bypass surgery or angioplasty) may improve prognosis in patients with myocardial infarction complicated by cardiogenic shock (Table 1). In such patients, early treatment with IABP is most important: Multivariate analysis identified early IABP-support with a duration of shock to IABP-treatment of ≥4 hours as an independent predictor of a positive short-term outcome. In shockpatients with postinfarction ventricular septal defect, IABP provides a marked hemodynamic improvement, and a significant decrease in shunt-flow (Figure 5). However, despite initial stabilization with IABP, such patients need immediate surgical repair of the septal defect to avoid hemodynamic deterioration.

The rate of complications related to percutaneous IABP was significantly attenuated by employing catheters of reduced size. Using 9.5-F catheters, a long duration of counterpulsation emerged as the most significant factor associated with complications. In our hospital, those patients with 9.5-F catheters in whom counterpulsation did not exceed 48 hours had a low complication rate of 3.9%.

The Hemopump is a catheter-mounted transvalvular left ventricular assist device intended for surgical placement via the femoral artery (Figures 6 and 7). In animal experiments, this device had been shown to unload the left ventricle, leading to myocardial protection and hemodynamic stabilization in both cardiogenic shock and regional myocardial ischemia. The 14-F Hemopump, a miniaturized pump-version for percutaneous placement, showed myocardial protective effects during acute myocardial ischemia in animal experiments. These effects were comparable to those of IABP. Clinically, there are only few experiences with the 14-F Hemopump in patients with high-risk coronary angioplasty and none in patients with cardiogenic shock, so far. During periods of cardiac arrest, the pump was able to maintain cardiac output with mean aortic pressures of nearly 50 mm Hg in patients with high risk PTCA (Figure 8). Future applications of the 14-F Hemopump in patients with cardiogenic shock, however, probably will be limited by both, small pump-rates (maximum flow rate of 2 l/min) and a significant procedure related morbidity.

The cardiopulmonary bypass support system (CPS) is the most powerful percutaneous assist device which allows flow rates of 4 to 6 l/min and, during cardiac arrest can provide complete circulatory support (Figure 9). However, during extracorporeal perfusion with CPS, the left ventricle may be adversely affected (Figure 10) and there are unresolved problems regarding left ventricular loading and the need for active simultaneous left ventricular decompression. In patients with increasing pulmonary artery pressure during CPS in cardiac arrest, artificial pulmonary valve incompetency might be a useful tool for effective pulmonary and retrograde left ventricular decompression (Figures 11 and 12). Additionally, a high morbidity rate was reported including neurovascular injury related to the perfusion cannulas in 26% of patients and 43% required transfusion of erythrocyte concentrates. Nevertheless, emergency CPS may be useful in selected patients with cardiac arrest unresponsive to conventional resuscitative measures. In such patients, survival rates of 20 to 30% have been reported with early institution of CPS, i. e. establishment of flow within 15 to 20 minutes. In summary, with the increasing complexity of techniques, circulatory support is clearly gaining importance in interventional cardiology. In patients with cardiogenic shock, intraaortic balloon counterpulsation is the most important assist device, which is an essential adjunct to facilitate early catheterization and reperfusion strategies. Use of CPS may be considered in selected patients with cardiac arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Alonso DR, Scheidt S, Post M, et al. Quantification of myocardial necrosis, clinical, pathologic and electrocardiographic correlations. Circulation 1973;48:588–96.

    PubMed  CAS  Google Scholar 

  2. Anderson RD, Ohman EM, Holmes DR, et al. Use of intraaortic balloon counterpulsation in patients presenting with cardiogenic shock: observations from the GUSTO-I study. J Am Coll Cardiol 1997;30:708–15.

    Article  PubMed  CAS  Google Scholar 

  3. Beermann W, Carlsson J, Rustige J, et al. Acute myocardial infarction with cardiogenic shock on admission: Incidence, prognostic implications, and current treatment strategies — results from “The 60-Minutes Myocardial Infarction Project”. Herz 1999;24: 369–77.

    PubMed  CAS  Google Scholar 

  4. Bengtson JR, Kaplan AJ, Pieper KS, et al. Prognosis in cardiogenic shock after acute myocardial infarction in the interventional era. J Am Coll Cardiol 1992;20:1482–9.

    PubMed  CAS  Google Scholar 

  5. Berger PB, Holmes DR, Stebbins AL, et al. Impact of an aggressive invasive catheterization and revascularization strategy on mortality in patients with cardiogenic shock in the Global Utilization of Streptokinase and Tissue plasminogen activator for Occluded coronary arteries (GUSTO-1) trial. An observational study. Circulation 1997;96:122–7.

    PubMed  CAS  Google Scholar 

  6. Bregman D, Nichols AB, Weiss MB, et al. Percutaneous intraaortic balloon insertion. Am J Cardiol 1980;46:261–4.

    Article  PubMed  CAS  Google Scholar 

  7. Califf RM, Bengtson JR. Cardiogenic shock. N Engl J Med 1994;330:1724–30.

    Article  PubMed  CAS  Google Scholar 

  8. Clauss RH, Birtwell WC, Albertal G, et al. Assisted circulation I. The arterial counterpulsator. J Thorac Cardiovasc Surg 1961;41:447–58.

    PubMed  CAS  Google Scholar 

  9. Flameng W. Indications for the use of the Hemopump. In: Flameng W, ed. Temporary cardiac assist with an axial pump system. Darmstadt: Steinkopff 1991:73–7.

    Google Scholar 

  10. Flaherty JT, Becker LC, Weiss JL, et al. Results of a randomized prospective trial of intraaortic balloon counterpulsation and intravenous nitroglycerin in patients with acute myocardial infarction. J Am Coll Cardiol 1985;6:434–46.

    PubMed  CAS  Google Scholar 

  11. Gurbel PA, Anderson RD, MacCord CS. Arterial diastolic pressure augmentation by intra-aortic balloon counterpulsation enhances the onset of coronary artery reperfusion by thrombolytic therapy. Circulation 1994;89:361–5.

    PubMed  CAS  Google Scholar 

  12. Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI). Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986;1:397–401.

    Google Scholar 

  13. GISSI-2 The International Study Group. In-hospital mortality and clinical course of 20,891 patients with suspected acute myocardial infarction randomized between alteplase and streptokinase with or without heparin. Lancet 1990;336:71–5.

    Article  Google Scholar 

  14. Goldberg RS, Gare JM, Alpert JS. Cardiogenic shock after acute myocardial infarction. Incidence and mortality from a community-wide perspective, 1975–1988. N Engl J Med 1991;325:1117–22.

    PubMed  CAS  Google Scholar 

  15. Grines CL. Aggressive intervention for myocardial infarction: Angioplasty, stents, and intra-aortic balloon pumping. Am J Cardiol 1996;78:Suppl 3A:29–34.

    Article  PubMed  CAS  Google Scholar 

  16. Gunnar RM. Cardiogenic shock complicating myocardial infarction. Circulation 1988;78:1508–10.

    PubMed  CAS  Google Scholar 

  17. Harnarayan C, Bennett MA, Pentecost BL, et al. Quantitative study of infarcted myocardium in cardiogenic shock. Br Heart J 1970;32:728–32.

    Article  PubMed  CAS  Google Scholar 

  18. Hartz R, LoCicero J, Sanders JH, et al. Clinical experience with portable cardiopulmonary bypass in cardiac arrest patients. Ann Thorac Surg 1990;50:437–41.

    PubMed  CAS  Google Scholar 

  19. Hering JP, Schröder T, Scholz KH, et al. Myocardial support and protection during regional myocardial ischemia using the hemopump assist device. Thorac Cardiovasc Surg 1991;39:257–62.

    Article  PubMed  CAS  Google Scholar 

  20. Hering JP, Scholz KH, Schröder T, et al. Risk of left ventricular loading during percutaneous cardiopulmonary support in cardiac arrest. Coronary Artery Dis 1992;3:419–24.

    Article  Google Scholar 

  21. Hochman JS, Boland J, Sleeper LA, et al. Current spectrum of cardiogenic shock and effect of early revascularization on mortality. Results of an international registry. Circulation 1995;91:873–81.

    PubMed  CAS  Google Scholar 

  22. Holmes DR, Bates ER, Kleiman NS, et al. Contemporary reperfusion therapy for cardiogenic shock: The GUSTO-1 trial experience. J Am Coll Cardiol 1995;3:668–74.

    Article  Google Scholar 

  23. Holmes DR, Califf RM, van de Werf F, et al. Difference in countrie’s use of resources and clinical outcome for patients with cardiogenic shock after myocardial infarction: results from the GUSTO trial. Lancet 1997;349:75–8.

    Article  PubMed  Google Scholar 

  24. Ishihara M, Sato H, Tateishi H, Uchida T, et al. Intraaortic balloon pumping as the postangioplasty strategy in acute myocardial infarction. Am Heart J. 1991;122:385–9.

    Article  PubMed  CAS  Google Scholar 

  25. Kantrowitz A, Kantrowitz A. Experimental augmentation of coronary flow by retardation of the arterial pressure pulse. Surgery 1953;34:678–87.

    PubMed  CAS  Google Scholar 

  26. Kantrowitz A, Tjonneland S, Freed PS, et al. Initial clinical experience with intraaortic balloon pumping in cardiogenic shock. JAMA 1968;203:113–8.

    Article  PubMed  CAS  Google Scholar 

  27. Kennedy JW, Gensini GG, Timmis GC, et al. Acute myocardial infarction treated with intracoronary streptokinase: A report of the Society of Cardiac Angiography. Am J Cardiol 1985;55:871–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kern MJ, Aguirre F, Bach R, et al. Augmentation of coronary blood flow by intraaortic balloon pumping in patients after coronary angioplasty. Circulation 1993;87:500–11.

    PubMed  CAS  Google Scholar 

  29. Killip T. Cardiogenic shock complicating myocardial infarction. J Am Coll Cardiol 1989;14:47–8.

    Google Scholar 

  30. Kovack PJ, Rasak MA, Bates ER, et al. Thrombolysis plus aortic counterpulsation: improved survival in patients who present to community hospitals with cardiogenic shock. J Am Coll Cardiol 1997;29:1454–8.

    Article  PubMed  CAS  Google Scholar 

  31. Kreuzer H, Bostroem B, Gleichmann U, et al. Der Einfluß der arteriellen Gegenpulsation auf die Hämodynamik des insuffizienten linken Herzens. In: Loogen F. Assistierte Zirkulation. Stuttgart: Thieme, 1967:57–64.

    Google Scholar 

  32. Lee L, Bates ER, Pitt B, et al. Percutaneous transluminal angioplasty improves survival in cardiogenic shock complicating acute myocardial infarction. Circulation 1988;78:1345–51.

    PubMed  CAS  Google Scholar 

  33. Lee L, Erbel R, Brown TM, et al. Multicenter registry of angioplasty therapy of cardiogenic shock. Initial and long term survival. J Am Coll Cardiol 1991;17:599–603.

    Article  PubMed  CAS  Google Scholar 

  34. Maroko PN, Bernstein EF, Lippy P. Effects of intraaortic balloon counterpulsation on the severity of myocardial ischemic injury following acute coronary occlusion. Circulation 1972;45:1150–9.

    PubMed  CAS  Google Scholar 

  35. Merhige ME, Smalling RW, Cassidy DB, et al. Effect of the Hemopump left ventricular assist device on regional myocardial perfusion and function: Reduction of ischemia during coronary occlusion. Circulation 1989;80:Suppl III:III-158–66.

    CAS  Google Scholar 

  36. Moosvi AR, Khaja F, Villanueva L, et al. Early revascularization improves survival in cardiogenic shock compliating acute myocardial infarction. J Am Coll Cardiol 1992;19:907–14.

    Article  PubMed  CAS  Google Scholar 

  37. Mooney MR, Arom KV, Joyce LD, et al. Emergency cardiopulmonary bypass support in patients with cardiac arrest. J Thorac Cardiovasc Surg 1991;101:405–54.

    Google Scholar 

  38. Moulopoulos S, Topas S, Kolff J. Diastolic balloon pumping (with carbon dioxide) in the aorta; a mechanical assistance to the failing circulation. Am Heart J 1962;63:669–75.

    Article  PubMed  CAS  Google Scholar 

  39. Mueller HS. Role of intra-aortic counterpulsation in cardiogenic shock and acute myocardial infarction. Cardiology 1994;84: 168–74.

    Article  PubMed  CAS  Google Scholar 

  40. Mundth ED. Surgical treatment of cardiogenic shock and of acute mechanical complications following myocardial infarction. Cardiovasc Clin 1977;8:241–63.

    PubMed  CAS  Google Scholar 

  41. Nachlas MM, Sieband MP. The influence of diastolic augmentation on infarct size following coronary artery ligation. J Thorac Cardiovasc Surg 1967;53:698–710.

    PubMed  CAS  Google Scholar 

  42. Nanas JN, Moulopoulos SD. Counterpulsation: Historical back-ground, technical improvements, hemodynamic and metabolic effects. Cardiology 1994;84:156–67.

    Article  PubMed  CAS  Google Scholar 

  43. Nash IS, Lorell BH, Fishman RF. A new technique for sheathless percutaneous intraaortic balloon catheter insertion. Cathet Cardiovasc Diagn 1991;23:57–60.

    Article  PubMed  CAS  Google Scholar 

  44. Ohman EM, Califf RM, George BS, et al. The use of intraaortic balloon pumping as an adjunct to reperfusion therapy in acute myocardial infarction. Am heart J 1991;121:895–901.

    Article  PubMed  CAS  Google Scholar 

  45. Ohman EM, George BS, White CJ, et al. Use of aortic counterpulsation to improve sustained coronary artery patency during acute myocardial infarction. Circulation 1994;90:792–9.

    PubMed  CAS  Google Scholar 

  46. O’Rourke MF, Norris RM, Campbell TI, et al. Randomized controlled trial of intraaortic balloon counterpulsation in early myocardial infarction with acute heart failure. Am J Cardiol 1981;47:815–20.

    Article  PubMed  Google Scholar 

  47. Overlie PA, Walter PD, Hurd HP, et al. Emergency cardiopulmonary support with circulatory support devices. Cardiology 1994;84:231–7.

    Article  PubMed  CAS  Google Scholar 

  48. Page DL, Caulfield JB, Kastor JA, et al. Myocardial changes associated with cardiogenic shock. N Engl J Med 1971;285:133–7.

    PubMed  CAS  Google Scholar 

  49. Pennington DG, Swartz M, Codd JE, et al. Intraaortic balloon pumping in cardiac surgical patients: a nine year experience. Ann Thorac Surg 1982;36:125–31.

    Article  Google Scholar 

  50. Phillips SJ, Ballentine B, Slonine D, et al. Percutaneous initiation of cardiopulmonary bypass. Ann Thorac Surg 1983;36:223–5.

    Article  PubMed  CAS  Google Scholar 

  51. Prewitt RM, Gu S, Schick U, et al. Intraaortic balloon counterpulsation enhances coronary thrombolysis induced by intravenous administration of a thrombolytic agent. J Am Coll Cardiol 1994;23:794–8.

    Article  PubMed  CAS  Google Scholar 

  52. Raithel SC, Swartz MT, Braun PR, et al. Experience with an emergency resuscitation system. Trans Am Soc Artif Intern Organs 1989;35:475–7.

    CAS  Google Scholar 

  53. Reedy JE, Swartz MT, Raithel SC, et al. Mechanical cardiopulmonary support for refractory cardiogenic shock. Heart Lung 1990;19:514–23.

    PubMed  CAS  Google Scholar 

  54. Reichman RT, Joyo CI, Dembitzky WP et al. Improved patient survival after cardiac arrest usinfg a cardiopulmonary support system. Ann Thorac Surg 1990;49:101–4.

    Article  PubMed  CAS  Google Scholar 

  55. Ryan TJ, Anderson JI, Antman EM, et al. ACC/AHA guidelines for the management of patients with acute myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). J Am Coll Cardiol 1996;28:1328–428.

    Article  PubMed  CAS  Google Scholar 

  56. Sanfelippo PM, Baker MH, Ewy HG, et al. Experience with intraaortic balloon counterpulsation. Ann Thorac Surg 1986;41: 36–41.

    Article  PubMed  CAS  Google Scholar 

  57. Scheidt S, Wilner G, Mueller H, et al. Intraaortic balloon counterpulsation in cardiogenic shock. — Report of a cooperative clinical trial. N Engl J Med 1973;288:979–84.

    PubMed  CAS  Google Scholar 

  58. Scholz KH, Saathoff H, Tebbe U. Intraaortale Ballongegenpulsation bei akutem Myokardinfarkt, ischämischer Linksherzinsuffizienz und therapierefraktärer Angina pectoris. Dtsch Med Wochenschr 1989;114:1821–7.

    Article  PubMed  CAS  Google Scholar 

  59. Scholz KH, Tebbe U, Chemnitius M, et al. Transfemoral placement of the left ventricular assist device „Hemopump” during mechanical resuscitation. Thorac Cardiovasc Surg 1990;38:69–72.

    Article  PubMed  CAS  Google Scholar 

  60. Scholz KH, Tebbe U, Sold G, et al. Erste klinische Erfahrungen mit dem transfemoral plazierbaren linksventrikulären Assist-System Hemopump. Intensivmedizin 1990;27:491–7.

    Google Scholar 

  61. Scholz KH, Hering JP, Schröder T, et al. Protective effects of the hemopump left ventricular assist device in experimental cardiogenic shock. Eur J Cardio-thorac Surg 1992;6:209–14.

    Article  CAS  Google Scholar 

  62. Scholz KH, Figulla HR, Bock H, et al. Perkutane Herz-Lungen-Maschine bei PTCA von Risiko- und Notfallpatienten. Dtsch Med Wochenschr 1992;117:127–32.

    Article  PubMed  CAS  Google Scholar 

  63. Scholz KH, Schweda F, Schröder T, et al. Effects of percutaneous Hemopump compared with intraaortic balloon counterpulsation during acute myocardial ischemia. J Am Coll Cardiol 1994;22: 403.

    Google Scholar 

  64. Scholz KH, Hering JP, Schröder T, et al. Myocardial protective effects of percutaneous cardiopulmonary support in experimental shock. J Am Coll Cardiol 1994;22:441.

    Google Scholar 

  65. Scholz KH, Werner GS, Schorn B, et al. Postinfarction left ventricular rupture: Successful surgical intervention after percutaneous cardiopulmonary support during mechanical resuscitation. Am Heart J 1994;127:210–1.

    Article  PubMed  CAS  Google Scholar 

  66. Scholz KH, Figulla HR, Schweda F, et al. Mechanical left ventricular unloading during high risk coronary angioplasty. — First use of a new percutaneous transvalvular left ventricular assist device. Cathet Cardiovasc Diagn 1994;31:61–9.

    Article  PubMed  CAS  Google Scholar 

  67. Scholz KH, Hering JP, Schröder T, et al. Left ventricular unloading by transvalvular axial flow pumping in experimental cardiogenic shock and during regional myocardial ischemia. Cardiology 1994;84:202–10.

    Article  PubMed  CAS  Google Scholar 

  68. Scholz KH, Schröder T, Hering JP, et al. Need for active left ventricular decompression during percutaneous cardiopulmonary support in cardiac arrest. Cardiology 1994;84:222–30.

    Article  PubMed  CAS  Google Scholar 

  69. Scholz KH, Figulla HR, Schröder T, et al. Pulmonary and left ventricular decompression by artificial pulmonary valve incompetence during percutaneous cardiopulmonary bypass support in cardiac arrest. Circulation 1995;91:2664–8.

    PubMed  CAS  Google Scholar 

  70. Scholz KH. Gegenwärtiger Indikationsbereich zum klinischen Einsatz des perkutanen kardiopulmonalen Bypass. In Scholz KH, Hrsg. Perkutaner kardiopulmonaler Bypass in der interventionellen Kardiologie. Aachen: Shaker, 1996:67–70.

    Google Scholar 

  71. Scholz KH, Ragab S, von zur Mühlen F, et al. Complications of intra-aortic balloon counterpulsation. — The role of catheter size and duration of support in a multivariate analysis of risk. Eur Heart J 1998;19:458–65.

    Article  PubMed  CAS  Google Scholar 

  72. Scholz KH, Dubois-Rande JL, Urban P, et al. Clinical experience with the percutaneous Hemopump during high-risk coronary angioplasty. Am J Cardiol 1998;82:1107–10.

    Article  PubMed  CAS  Google Scholar 

  73. Scholz KH, Ragab S, Aleksic I, et al. Cardiogenic shock following postinfarction ventricular septal defect. Eur Heart J (in press).

  74. Scholz KH, Ragab S, Vonhof S, et al. Intraaortic balloon counterpulsation in patients with cardiogenic shock complicating acute myocardial infarction — Duration of shock to cardiac assist is an independent predictor of short-term outcome. Eur Heart J (in press).

  75. Schröder T, Hering JP, Scholz KH, et al. Efficiency of the left ventricle assist device Hemopump in cardiac fibrillation. Br J Anaesth 1992;68:536–9.

    Article  PubMed  Google Scholar 

  76. Shawl FA, Domanski MI, Wish MH, et al. Emergency cardiopulmonary bypass support in patients with cardiac arrest in the catheterization laboratory. Cathet Cardiovasc Diagn 1990;19: 8–12.

    Article  PubMed  CAS  Google Scholar 

  77. Smalling RW, Cassidy DB, Barrett R, et al. Improved regional myocardial blood flow, left ventricular unloading, and infarct salvage using an axial-flow, transvalvular left ventricular assist device: A comparison with intraaortic balloon counter-pulsation and reperfusion alone in a canine infarction model. Circulation 1992;85:1152–9.

    PubMed  CAS  Google Scholar 

  78. Smalling RW, Sweeney M, Lachterman B, et al. Transvalvular left ventricular assistance in cardiogenic shock secondary to acute myocardial infarction. J Am Coll Cardiol 1994;23:637–44.

    Article  PubMed  CAS  Google Scholar 

  79. Stomel RJ, Rasak M, Bates ER. Treatment strategies for acute myocardial infarction complicated by cardiogenic shock in a community hospital. Chest 1994;105:997–1002.

    Article  PubMed  CAS  Google Scholar 

  80. Stone G. Primary PTCA in High Risk Patients with Acute Myocardial Infarction. J Invas Cardiol 1995;7:Suppl:12–21.

    Google Scholar 

  81. Sturm JT, McGee MG, Fuhrmann TM, et al. Treatment of postoperative low output syndrome with intraaortic balloon pumping: Experience with 419 patients. Am J Cardiol 1980;45:1033–6.

    Article  PubMed  CAS  Google Scholar 

  82. Sugimoto JT, Baird E, Bruner C. Percutaneous cardiopulmonary support in cardiac arrest. Trans Amer Soc Artif Int Organs 1991; 37:M282–3.

    CAS  Google Scholar 

  83. Vogt A, Niederer W, Pfafferoot C, et al. Direct percutaneous transluminal coronary angioplasty in acute myocardial infarction. Predictors of short-term outcome and the impact of coronary stenting. Eur Heart J 1998;19:917–21.

    Article  PubMed  CAS  Google Scholar 

  84. Vogt A, Neuhaus KL. Therapie des akuten Myokardinfarkts — Primäre PTCA oder Thrombolyse? Herz 1999;24:363–8.

    Article  PubMed  CAS  Google Scholar 

  85. Wampler RK, Moise JC, Frazier OH, et al. In vivo evaluation of a peripheral vascular access axial flow blood pump. Trans Am Soc Artif Intern Organs 1988;34:450–5.

    CAS  Google Scholar 

  86. Wampler RK, Frazier OH, Lansing AM, et al. Treatment of cardiogenic shock with the Hemopump left ventricular assist device. Ann Thorac Surg 1991;52:506–13.

    Article  PubMed  CAS  Google Scholar 

  87. Waldenberger FR, Wouters P, Wiebalck A, et al. Use of left-ventricular assist with the Hemopump in cardiac surgery. Cardiology 1994;84:211–5.

    Article  PubMed  CAS  Google Scholar 

  88. Zeymer U, Reissig M, Neuhaus KL. Einsatz einer perkutan anschließbaren Herz-Lungen-Maschine unter Reanimationsbedingungen im kardiogenen Schock bei akutem Herzinfarkt. Dtsch Med Wochenschr 1993;118:1755–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl H. Scholz.

Additional information

Herrn Professor Dr. Heinrich Kreuzer zum 70. Geburtstag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, K.H. Reperfusionstherapie und mechanische Kreislauf-unterstützung bei Patienten mit kardiogenem Schock. Herz 24, 448–464 (1999). https://doi.org/10.1007/BF03044431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044431

Schlüsselwörter

Key Words

Navigation