Skip to main content
Log in

Developmental trajectories in geographically separated populations of non-marine ostracods: morphometric applications for palaeoecological studies

  • Published:
Senckenbergiana lethaea Aims and scope Submit manuscript

Abstract

Developmental trajectories refer here to patterns of size and shape changes in ostracod valves during the sequence of post-embryonic growth stages. The information obtained from the study of such patterns has significant applications for evolutionary biology and/or (palaeo) ecology. Using geometric morphometrics methods, we describe the developmental trajectories of three ostracod species with valves retrieved from the sediments of lakes Mondsee (Austria), Hańcza (Poland) and Iseo (Italy). Size and shape data result in distinct developmental trajectories. Ontogenetic changes agree with predictions of Prizbram’s and Brooks’ laws. Patterns of valve shape change provide information which might be of use to the taxonomic definition of evolutionary lineages and to the development of studies of allometry and heterochrony in non-marine ostracods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absolon, A. (1978): Die GattungCandona (Ostracoda) im Quartär von Europa. — Rada Matematicky a Prirodnich Ved,88: 1–72.

    Google Scholar 

  • Alberch, P., Gould, S.J., Oster, G.F. &Wake, D.B. (1979): Size and shape in ontogeny and phylogeny. — Paleobiology,5: 296–317.

    Google Scholar 

  • Alcorlo, P.;Baltanás, A. &Arqueros, L. (1999): Intra-clonal shape variability in the non-marine ostracod Heterocypris barbara (Crustacea, Ostracoda). — Geosound (Yerbilimleri),35: 1–11.

    Google Scholar 

  • Baltanás, A., Otero, M., Arqueros, L., Rossetti, G.P. &Rossi, V. (2000): Ontogenetic changes in the carapace shape of the non-marine ostracodEucypris virens (Jurine). — Hydrobiologia,419: 65–72.

    Article  Google Scholar 

  • Baltanás, A., Brauneis, W, Danielopol, D.L. &Linhart, J. (2003): Morphometric methods for applied ostracodology: tools for outline analysis of nonmarine ostracods. — InPark, L.E. &Smith, A.J. (Eds): Bridging the gap, trends in the ostracode biological and geological sciences; The Paleontological Society Papers,9: 101–118.

    Google Scholar 

  • Bookstein, F.L. (1991): Morphometric tools for landmark data: Geometry and Biology. — 1–435; New York (Cambridge University Press).

    Google Scholar 

  • Brauneis, W., Linhart, J., Stracke, A., Danielopol, D.L., Neubauer, W. &Baltanás, A. (2006): — Morphomatica (Version 1.6.0) User Manual/Tutorial. — 1–82; Mondsee (Limnological Institute, Austrian Academy of Sciences), [download at: http://palstrat.uni-graz.at/morphomatica/morphomatica_e.htm]

    Google Scholar 

  • Brooks, W.K. (1886): Report on the Stomatopoda dredged by H.M.S.“Challenger” during the years 1873 – 1876. — Report on the scientific results of the voyage of H.M. S.Challenger, Zoology,16: 1–116.

    Google Scholar 

  • Clarke, K.R. &Gorley R.N. (2006): Primer v. 6: Computer program and User Manual/Tutorial. — 1–190; Plymouth (PRIMERE Ltd., Plymouth Marine Laboratory).

    Google Scholar 

  • Danielopol, D.L. (1990): On the interest of the “Cytherissa” project and the present state of researches. — InDanielopol, D.L., Carbonel, P. &Colin, J.P. (Eds):Cytherissa theDrosophila of Paleolimnology, Bulletin de l’Institut de Géologie du Bassin d’Aquitaine,47: 15–26; Talence (Université de Bordeaux).

    Google Scholar 

  • Danielopol, D.L., Ito, E., Wansard, G., Kamiya, T., Cronin, T. &Baltanás, A. (2002): Techniques for Collection and Study of Ostracoda, p. 65–97. — In:Holmes, J.A. &Chivas, A.R. (Eds) The Ostracoda, Application in Quaternary research. American Geophysical Union, Geophysical Monograph131: 65–97.

    Google Scholar 

  • Dryden, I.L. &Mardia, K.V. (1998): Sratistical Shape Analysis. — 1–347; Chichester (John Wiley & Sons)

    Google Scholar 

  • Dyar, H.G. (1890): The number of molts of lepidopterous larvae. — Psyche,5: 420–422

    Article  Google Scholar 

  • Finlay, B.J., Esteban, G.F., Brown, S., Fenchel, T. &Hoef-Emden, K. (2006): Multiple cosmopolitan ecotypes within a microbial eukariote morphospecies. — Protist,157: 377–390.

    Article  Google Scholar 

  • Foote, M. (1995): Morphological diversification of Paleozoic crinoids. — Paleobiology,14: 387–400.

    Google Scholar 

  • Foster, D.W. &Kaesler, R.L. (1988) Shape analysis. Ideas from Ostracoda. — InMcKinney, M.L. (Ed.): Heterochrony in Evolution, 53–69; New York (Plenum Press).

    Google Scholar 

  • Fowler, G.H. (1909): The Ostracoda. Biscayan plankton collected during a cruise of H.M.S. Research, 1900. — Transactions of Linnean Society, Zoology,2nd Ser.,10: 219–336.

    Article  Google Scholar 

  • Geiger, W. (1990): Field and laboratory studies on the life cycle ofCytherissa lacustris (Sars) (Crustacea, Ostracoda) with special emphasis on the role of temperature. — Bulletin de l’Institut de Géologie du Bassin d’Aquitaine,47: 191–208.

    Google Scholar 

  • Gould, S.J. (1977): Ontogeny and Phylogeny. — I-IX, 1–501; Cambridge, Mass. (The Belnap Press).

    Google Scholar 

  • Grafenstein, U. von (2002): Oxygen-isotope studies of ostracods from deep lakes. — InHolmes, J.A. &Chivas, A.R. (Eds): The Ostracoda, application in Quaternary research. Geophysical Monograph,131: 249–266; Washington (American Geophysical Union).

    Google Scholar 

  • Heip, C. (1976): The life-cycle of Cyprideis torosa (Crustacea, Ostracoda). — Oecologia24, 229–245.

    Article  Google Scholar 

  • Hessland, I. (1949): Investigations of the lower Ordovician ostracods of the Siljan district, Sweden. — Bulletin of Geological Institute Uppsala,33: 97–408.

    Google Scholar 

  • Holmes, J.A. &Chivas, A.R. (Eds) (2002): The Ostracoda, Application in Quaternary research. Geophysical Monograph131: 1–313; Washington (American Geophysical Union).

    Google Scholar 

  • Hounsome, M.V. (1975): The effects of water temperature on the growth and allometry ofEucypris virens (Jurine) (Ostracoda, Crustacea). Ph.D. Thesis. — 1–220; Manchester (University of Manchester).

    Google Scholar 

  • Hunt, G. (2001): Mixture Model Analysis v. 1.31. Software program. — Chicago (Committee on Evolutionary Biology, University of Chicago)

    Google Scholar 

  • Hunt, G. (2007): Evolutionary divergence in directions of high phenotypic variance in the ostracode genusPoseidonamicus. — Evolution,61: 1560–1576.

    Article  Google Scholar 

  • Hunt, G. (2007): Morphology, ontogeny and phylogenetics of the genusPoseidonamicus (Ostracoda: Thaerocytherinae). — Journal of Paleontology,81: 607–631.

    Article  Google Scholar 

  • Hunt, G. &Chapman, R.E. (2001): Evaluating hypothesis of instar-grouping in arthropods: a maximum likelihood approach. — Paleobiology,27: 466–484.

    Article  Google Scholar 

  • Iepure, S., Namiotko, T. &Danielopol, D.L. (2007): Evolutionary aspects within the species groupPseudocandona eremita (Vejdovský) (Ostracoda, Candoninae). — Hydrobiologia,585: 159–180.

    Article  Google Scholar 

  • Irizuki, T. &Sasaki, O. (1993) Analysis of morphological changes through ontogeny: generaBaffinicythere andElofsonella (Hemicytherinae). — InMcKenzie, K.G. &Jones, P.J. (Eds): Ostracoda in the Earth and Life Sciences, 335–350; Rotterdam (A.A. Balkema)

    Google Scholar 

  • Kaesler, R.L. &Foster, D.W. (1988): Ontogeny ofBradleya normani (Brady): Shape analysis of landmarks. — InHanai, T., Ikeya, N. &Ishizaki, K. (Eds): Evolutionary biology of Ostracoda, 207–218. Tokyo & Amsterdam (Kodansha & Elsevier).

    Chapter  Google Scholar 

  • Kamiya, T. (1992): Heterochronic dimorphism ofLoxoconcha uranouchiensis (Ostracoda) and its implication for speciation. — Paleobiology,18: 221–236.

    Google Scholar 

  • Kendall, D.G. (1977): The diffusion of shape. — Advances in Applied Probability,9: 428–430.

    Article  Google Scholar 

  • Kesling, R.V. (1951a): The morphology of ostracod molt stages. — Illinois Biological Monographs,21: 1–126.

    Google Scholar 

  • Kesling, R.V. (1951b): Mechanical solution of formulas for growth rates. — Contributions from Museum of Paleontology University of Michigan,8 (10): 231–237.

    Google Scholar 

  • Kesling, R.V. (1952): Doubling in size of ostracod carapaces in each molt stage. — Journal of Paleontology,26: 772–780.

    Google Scholar 

  • Kesling, R.V. (1953): A slide rule for the determination of instars in ostracod species. — Contributions from Museum of Paleontology University of Michigan,11: 97–109.

    Google Scholar 

  • Kesling, R.V. &Crafts, F.C. (1962): Ontogenetic increase in Archimedean weight of the ostracodChlamydotheca unispinosa (Baird). — American Midland Naturalist,68: 149–153.

    Article  Google Scholar 

  • Kesling, R.V. &Takagi, R.S. (1961): Evaluation of Przibram’s law for ostracods by use of the Zeuthen Cartesian-diver weighing technique. — Contribution from Museum of Paleontology University Michigan,17: 1–58.

    Google Scholar 

  • Klingerberg, C.P. (1998): Heterochrony and allometry: the analysis of evolutionary change in ontogeny. — Biological Reviews,73: 79–123.

    Article  Google Scholar 

  • Kurata, H. (1962): Studies on the age and growth of Crustacea. — Bulletin of the Hokkaido Regional Fisheries Research Laboratory,24: 1–115.

    Google Scholar 

  • Lestrel, P.E. (2000): Morphometrics for the Life Sciences; — 1–261; Singapore (World Scientific).

    Google Scholar 

  • Lestrel, P.E. (Ed.) (1997): Fourier descriptors and their applications in Biology. — 1–466; Cambridge (Cambridge University Press).

    Google Scholar 

  • MacLeod, N. (1999): Generalizing and extending the eigenshape method of shape space visualization and analysis. — Paleobiology,25: 107–38.

    Google Scholar 

  • Majoran, S., Agrenius, S. &Kucera, M. (2000): The effect of temperature on shell size and growth rate inKrithe praetexta (Sars). — Hydrobiologia,419: 141–148.

    Article  Google Scholar 

  • Maness, T.R. &Kaesler, R.L. (1987): Ontogenetic changes in the carapace ofTyrrhenocythere amnicola (Sars) a hemicytherid ostracode. — The University of Kansas Paleontological Contributions,118: 1–15.

    Google Scholar 

  • Marín, J.A. (1984) Estudio del desarrollo de los ostrácodosEucypris aragonica y Heterocypris salina en cultivo de barro. — Limnetica,1: 345–354.

    Google Scholar 

  • Martens, K. (1983): Aspects of the biology ofMytilocypris henricae (Chapman) (Crustacea, Ostracoda) with particular emphasis on salinity tolerance, life history and postembrional ontogeny. — M. Sc. Thesis; 1–235; Canberra (The Australian National University).

    Google Scholar 

  • Martens, K. (1985): Effects of temperature and salinity on postembryonic growth inMytilocypris henricae (Chapman) (Crustacea, Ostracoda). Journal of Crustacean Biology,5: 258–272.

    Article  Google Scholar 

  • McGhee, G.R., Jr. (1999): Theoretical Morphology. — 1–316, New York (Columbia University Press).

    Google Scholar 

  • McLellan, T. &Endler, J.A. (1998): The relative success of some methods for measuring and describing the shape of complex objects. — Systematic Biology,47: 264–81.

    Article  Google Scholar 

  • Meisch, C. (2000): Freshwater Ostracoda of Western and Central Europe. — 1–522; Heidelberg (Spektrum Akademischer Verlg., G. Fischer).

    Google Scholar 

  • Mezquita, F., Olmos, V. &Oltra, R. (2000): Population ecology ofCyprideis torosa (Jones, 1850) in a hypersaline environment of the Western Mediterranean (Santa Pola, Alacant). — Ophelia,53: 119–130.

    Google Scholar 

  • Minati, K.,Cabral, M.C.,Pipík, R.,Danielopol, D.L.,Linhart, J. &Neubauer, W. (2008): Morphological variability among European populations ofVestalenula cylindrica (Straub) (Crustacea, Ostracoda). — Palaeogeography, Palaeoclimatology, Palaeoecology. Doi: 10.1016/j.palaeo.2007.05.027.

  • Needham, A.E. (1950): The form-transformation of the abdomen of the female pea-crab,Pinnotheres pisumLeach. — Proceedings of Royal Society,B, 137: 115–136.

    Article  Google Scholar 

  • Neubauer, W. (2007): Measuring the difference of approximating B-spline curves with application in distinguishing Ostracoda. — MSc Thesis, Institute of Mathematics, University of Salzburg, http://palstrat.uni-graz.at/morphomatica/morphomatica_e.htm).

  • Park, L.E. &Smith, A.J. (Eds.) (2003): Bridging the gap, Trends in the Ostracode Biological and Geological Sciences; The Paleontological Society Papers,9: 1–290; New Haven (The Paleontological Society).

    Google Scholar 

  • Przibram, H. (1931): Connecting laws in animal morphology. Four lectures held at the University of London. — 1–62; London (University London Press).

    Google Scholar 

  • Przibram, H. &Megušar, F. (1912): Wachtstummessungen anSphodromantis bioculataBurm. 1. Länge und Masse. — Achiv für Entwickungsmechanik der Organismen (Wilhelm Roux),34: 680–741.

    Article  Google Scholar 

  • Ranta, E. (1979): Population biology ofDarwinula stevensoni (Crustacea, Ostracoda) in an oligotrophic lake. — Annales Zoologici Fennici16, 28–35.

    Google Scholar 

  • Reyment, R.A. (1995): On multivariate morphometrics applied to Ostracoda. — InRiha, J. (Ed.): Ostracoda and biostratigraphy, pp. 43–48, Rotterdam (A.A. Balkema).

    Google Scholar 

  • Reyment, R.A., Bookstein, F.L., McKenzie, K., &Majoran, G.S. (1988). Ecophenotypic variation inMitilus pumilus (Ostracoda) from Australia, studied by canonical variate analysis and tensor biometrics. — Journal of Micropalaeontology,7: 11–20.

    Article  Google Scholar 

  • Reyment, R.A. &Bookstein, F.L. (1993): Infraspecific variability in shape inNeobuntonia airella: an exposition of geometric morphometry. — InMcKenzie, K.G. &Jones, P.J. (Eds.): Ostracoda in the Earth and Life Sciences: 291–314; Rotterdam (A.A. Balkema).

    Google Scholar 

  • Rohlf, F.J. (1990): Morphomettics. — Annual Review of Ecology and Systematics,21:299–316.

    Article  Google Scholar 

  • Rohlf, F.J. 2001.Tpsdig, Program version 1.43. Stony Brook (Department of Ecology and Evolution, State University of New York) [http://life.bio.sunysb.edu/morph/soft-dataacq.html].

  • Rohlf, F.J. &Archie, J.W. (1984): A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). — Systematic Zoology,33:302–317.

    Article  Google Scholar 

  • Rudjakov, J.A. (1962): Some growth regularities of pelagic ostracods of the family Halocypridae. — Akademiya Nauk SSSR,58: 167–171.

    Google Scholar 

  • Schweitzer, P.N. &Lohmann, G.P. (1990): Life-history and the evolution of ontogeny in the ostracode genus Cyprideis. — Paleobiology,16: 107–125.

    Google Scholar 

  • Schweitzer, P.N., Kaesler, R.L. &Lohmann, G.P. (1986): Ontogeny and heterochrony in the ostracodeCapellinaCoryell from Lower Permian rocks in Kansas. — Paleobiology,12: 290–301.

    Google Scholar 

  • Shaver, R.H. (1953): Ontogeny and sexual dimorphism inCytherella bullata. — Journal of Paleontology,27: 471–480.

    Google Scholar 

  • Skosberg, T. (1920): Studies on marine ostracods. I. Cypridinids, halocyprids, and policopids. — Zoologiska Bidrag Uppsala,Suppl. 1: 1–782.

    Google Scholar 

  • Smith, R.J. &Martens, K. (2000): The ontogeny of the cypridid ostracodEucypris virens (Jurine, 1820) (Crustacea, Ostracoda). — Hydrobiologia,419: 31–63.

    Article  Google Scholar 

  • Sohn, I.G. (1950): Growth stages in fossil ostracodes. — American Journal of Sciences,248: 427–434.

    Google Scholar 

  • Sterelny, K. (1999): Species as ecological mosaics. — InWilson, R.A. (Ed.): Species: new interdisciplinary essays: 119–138; Cambridge, Mass. (The MIT Press).

    Google Scholar 

  • Zelditch, M.L., Swiderski, D.L., Sheets, H.D. &Fink, W.L. (2004): Geometric morphometrics for biologists; a Primer. — 1–443; Amsterdam (Elsevier, Academic Press).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan L. Danielopol.

Additional information

Dedicated to Prof. Dr. F. F.Steininger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielopol, D.L., Baltanás, A., Namiotko, T. et al. Developmental trajectories in geographically separated populations of non-marine ostracods: morphometric applications for palaeoecological studies. Senckenbergiana lethaea 88, 183–193 (2008). https://doi.org/10.1007/BF03043988

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043988

Key words

Navigation