Skip to main content

Forelimb biomechanics of nonavian theropod dinosaurs in predation

Abstract

Theoretical models of theropod forelimb biomechanics are often tainted with preconceived ideas. Actualistic modeling using specimens and casts, coupled with CAT-scans and dissections of extant vertebrate forelimbs, demonstrates that forelimb motion in theropods is considerably less than hypothetical models indicate. The forelimbs ofCoelophysis, cf.Coelurus, Allosaurus, Deinonychus, andTyrannosaurus were investigated. Motion at the shoulder, elbow, wrist, and digits were analyzed and compared with those of birds and crocodiles, then motion of the entire forelimb was examined. The results have considerable implications for forelimb use in predation. Three models of predation are recognized: 1) long armed grasper —Deinonychus, cf.Coelurus; 2) clutcher -Tyrannosaurus; 3) combination grasper-clutcher -Allosaurus. Analysis of the joints ofDeinonychus show that the forelimb could not fold avian fashion. The scapula of the theropodUnenlagia was oriented incorrectly and differs little from the standard theropod scapula.

This is a preview of subscription content, access via your institution.

References

  • Anton, J. (2000): Ceratopsian crests as acoustic devices. — Journal of Vertebrate Paleontology20(supl. 3):27A.

    Google Scholar 

  • Boch, W.J. (1974): The avian skeletomusculature system. — In D.S.Farmer, J.R.King, & K.P.Parkes [eds], Avian Biology:4:119–257, 31 text figs.; New York (Academic Press).

    Google Scholar 

  • Carpenter, K. (1998). Evidence of predatory behavior by carnivorous dinosaurs. —Gaia15: 135–144.

    Google Scholar 

  • Carpenter, K., &Smith, M. (1995): Osteology and functional morphology of the forelimb in tyrannosaurids as compared with other theropods. — Journal of Vertebrate Paleontology15(supl. 3):21A.

    Google Scholar 

  • Carpenter, K. &Smith, M. (2001): Forelimb osteology and biomechanics ofTyrannosaurus rex. — InD. Tanke &K. Carpenter [eds], Mesozoic Vertebrate Life: 90–116, 13 text figs.; Bloomington (Indiana University Press).

    Google Scholar 

  • Carpenter, K., Madsen, J. andLewis, A. (1994): Mounting of fossil vertebrate skeletons. — InP. Leiggi andP. May [eds], Vertebrate Paleontological Techniques.: 285–322, 38 text figs.; New York (Cambridge University Press).

    Google Scholar 

  • Carrano, M.T. (2000): Homoplasy and the evolution of dinosaur locomotion. — Paleobiology26:489–512.

    Article  Google Scholar 

  • Chatterjee, S. (1997): The Rise of Birds. — 312pp., Baltimore (Johns Hopkins University Press).

    Google Scholar 

  • Chure, D. (2001): One dead reptile: the death and resurrection of a carnivorous dinosaur in Dinosaur National Monument. — Dino Press,2:4–11.

    Google Scholar 

  • Chure, D.L. &Madsen, J.H. (1996): On the presence of furculae in some non-maniraptoran theropods. — Journal of Vertebrate Paleontology16:573–577.

    Google Scholar 

  • Chatterjee, S. (1998): Counting the fingers of birds and dinosaurs. — Science280:355.

    Article  Google Scholar 

  • Clark, J.M., Norell, M.A., &Chiappe, L.M. (1999): An oviraptorid skeleton from the Late Cretaceous of Ukhaa Tolgod, Mongolia, preserved in an avianlike brooding position over an oviraptorid nest. — American Museum Novitates3265: 1–36.

    Google Scholar 

  • Colbert, E.D. (1989): The Triassic dinosaurCoelophysis. — Museum of Northern Arizona Bulletin57: 1–160.

    Google Scholar 

  • Currie, P.J. &Carpenter, K. (2000): A new specimen ofAcrocanthosaurus atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA. — Geodiversitas22:207–246.

    Google Scholar 

  • Dal Sasso C. &Signore M. (1998): Exceptional soft tissue preservation in a theropod dinosaur from Italy. — Nature392:383–387.

    Article  Google Scholar 

  • Feduccia, A. (1986): The scapulocoracoid of flightless birds: a primitive avian character similar to that of theropods. — Ibis128: 128–132.

    Article  Google Scholar 

  • Galton, P.M. (1969): The pelvic musculature of the dinosaurHypsilophodon (Reptilia: Ornithischia). — Postilla131:1–64.

    Google Scholar 

  • Galton, P.M. (1971): Manus movements of the coelurosaurian dinosaurSyntarsus and the opposability of the theropod hallux. — Arnoldia2(5):1–8.

    Google Scholar 

  • Gatsey, S.M. (1990): Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology16:170–186.

    Google Scholar 

  • Gauthier, J. &Padian, K. (1985): Phylogenetic, functional, and aerodynamic analyses of the origin of birds and their flight. — In:M.K. Hecht, J.H. Ostrom, G. Viohl, &P. Wellnhofer [eds], The Beginnings of Birds.:185–197, 3 text-figs; Eichstätt (Brönner & Daentler).

    Google Scholar 

  • Gilmore, C.W. (1920): Osteology of the carnivorous Dinosauria in the United States National Museum, with special reference to the generaAntrodemus (Allosaurus) andCeratosaurus. — U.S. National. Museum Bulletin110: 1–154.

    Google Scholar 

  • Holland, W.J. (1910): A review of some recent criticisms of the restorations of sauropod dinosaurs existing in the museums of the United States, with special reference to that ofDiplodocus carnegiei in the Carnegie Museum. — The American Naturalist44: 259–282.

    Article  Google Scholar 

  • Hollinshead, W.H. (1969): Functional anatomy of the limbs and back. — 420 pp. Philadelphia (W.B. Saunders).

    Google Scholar 

  • Horner, J.R. &Lessem, D. (1994): The CompleteT. rex. — New York (Harper Collins).

    Google Scholar 

  • Hutchinson, J.R. &Gatsey, S.M. (2000): Adductors, abductors, and the evolution of archosaur locomotion. — Paleobiology26:734–751.

    Article  Google Scholar 

  • Jenkins, F.A. (1993): The evolution of the avian shoulder joint. — American Journal of Science293A:253–267.

    Google Scholar 

  • Jenkins, F.A., Dial, K.P. &Goslow, G.E. (1988): A cineradiographic analysis of bird flight: the wishbone in starlings is a spring. — Science241:1495–1498.

    Article  Google Scholar 

  • Lambe, L. M. (1917): The Cretaceous theropodous dinosaurGorgosaurus. — Geological Survey of Canada Memoir,100:1–85.

    Google Scholar 

  • Makovicky, P.J. &Currie, P.J. (1998): The presence of a furcula in tyrannosaurid theropods, and its phylogenetic and functional implications. Journal of Vertebrate Paleontology18:143–149.

    Google Scholar 

  • Makovicky, P.J. &Sues, H.-D. (1998): Anatomy and phylogenetic relationships of the theropod dinosaurMicrovenator celer from the Lower Cretaceous of Montana. American Museum Novitates3240:1–27.

    Google Scholar 

  • Madsen, J. H. (1976):Allosaurus fragilis, a revised osteology. — Utah Geological and Mineralogy Survey Bulletin109: 1–163.

    Google Scholar 

  • McWhinney, L.A., Carpenter, K., &Rothschild, B. (2001): Dinosaurian humeral periostitis: a case of a juxtacortical lesion in the fossil record. InD. Tanke &K. Carpenter [eds], Mesozoic Vertebrate Life: 364–377, 4 text figs.; Bloomington (Indiana University Press).

    Google Scholar 

  • Middleton, K. M. &Gatsey, S. M. (2000): Theropod forelimb design and evolution. — Zoological Journal of the Linnean Society,128: 149–187.

    Article  Google Scholar 

  • Meers, M.B. (1999): Evolution of the Crocodylian Forelimb: Anatomy, Biomechanics and Functional Morphology — Ph.D. Dissertation; Baltimore (The Johns Hopkins University School of Medicine).

    Google Scholar 

  • Morell, V. (1997): The origin of birds: the dinosaur debate. — Audubon, April:36–45.

  • Nicholls, E.L. &Russell, A.P. (1985): Structure and function of the pectoral girdle and forelimb ofStruthiomimus altus (Theropoda: Ornithomimidae). — Palaeontology28: 543–677.

    Google Scholar 

  • Norell, M.A. &Makovicky, P.J. (1997): Important features of the dromaeosaur skeleton: information from a new specimen. American Museum Novitates3215: 1–28.

    Google Scholar 

  • Novas, F.E. &Puerta, P.F. (1997): New evidence concerning avian origins from the Late Cretaceous of Patagonia. — Nature387:390–392.

    Article  Google Scholar 

  • Osborn, H. (1906):Tyrannosaurus, Upper Cretaceous carnivorous dinosaur (second communication). — American Museum of Natural History Bulletin22:281–296.

    Google Scholar 

  • Osborn, H.F. (1916): Skeletal adaptations ofOrnitholestes, Struthiomimus, Tyrannosaurus. — American Museum of Natural History Bulletin35:733–771.

    Google Scholar 

  • Osmólska, H., &Roniewicz, E. (1970): Deinocheiridae, a new family of theropod dinosaur. — Palaeontologica Polonica21:5–19.

    Google Scholar 

  • Osmólska, H., Roniewicz, E. &Barsbold, R. (1972): A new dinosaur,Gallimimus bullatus, n.gen., n.sp. (Ornithomimidae), from the Upper Cretaceous of Mongolia. — Palaeontologica Polonica27:103–143.

    Google Scholar 

  • Ostrom, J. (1969): Osteology ofDeinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. — Peabody Museum of Natural History Bulletin30: 1–165.

    Google Scholar 

  • Ostrom, J. (1974): The pectoral girdle and forelimb function ofDeinonychus (Reptilia: Saurischia): a correction. — Postilla165:1–11.

    Google Scholar 

  • Ostrom, J. (1976):Archaeopteryx and the origin of birds. — Biological Journal of the Linnean Society8:91–182.

    Article  Google Scholar 

  • Ostrom, J. (1978): The osteology ofCompsognathus longipes Wagner. — Zitteliana,4:73–118.

    Google Scholar 

  • Ostrom, J. (1995): Wing biomechanics and the origin of bird flight. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen195: 253–266.

    Google Scholar 

  • Padian, K. &Chiappe, L.M. (1998): The origin and early evolution of birds. — Biological Review73:1–42.

    Article  Google Scholar 

  • Paul, G.S. (1988): Predatory Dinosaurs of the World. — 464pp., New York (Simon & Schuster).

    Google Scholar 

  • Perle A., L.M. Chiappe, Barsbold R., Clark, J.M., &Norell, M.A. (1994): Skeletal morphology ofMononykus olecranus (Theropoda: Avialae) from the Late Cretaceous of Mongolia. — American Museum Novitates3105:1–29.

    Google Scholar 

  • Poore, S.O., Ashcroft, A., Sánchez-Haiman, A., &Goslow, G.E. (1997): The contractile properties of the M. supracoracoideus in the pigeon and starling: a case for long-axis rotation of the humerus. — Journal of Experimental Biology200:2987–3002.

    Google Scholar 

  • Russell, D. A. &Dong Z.M. (1993): A nearly complete skeleton of a new troodontid dinosaur from the Early Cretaceous of the Orodos Basin, Inner Mongolia, People’s Republic of China. — Canadian Journal of Earth Sciences30: 2163–2173.

    Google Scholar 

  • Russell, D.A., &Russell, D.E. (1993): Mammal-dinosaur convergence. — National Geographic Research & Exploration9: 70–79.

    Google Scholar 

  • Sereno, P.C. (1993): The pectoral girdle and forelimb of the basal theropodHerrerasaurus ischigualastensis. Journal of Vertebrate Paleontology,13: 425–450.

    Google Scholar 

  • Smith, M., &Carpenter, K. (1990): Forelimb biomechanics ofTyrannosaurus rex. Journal of Vertebrate Paleontology10 (Sup.#3):43A.

    Google Scholar 

  • Tarsitano, S. (1991):Archaeopteryx: Quo Vadis? — In:,H.-P. Schultze &,L. Trueb [eds], Origins of the Higher Groups of Tetrapods.:541–57616 text figs.; Ithaca, NY (Cornell University Press).

    Google Scholar 

  • Vazquez, R.J. (1992): Functional osetology of the avian wrist and the evolution of flapping flight. — Journal of Morphology211:259–268.

    Article  Google Scholar 

  • Walker, A.D. (1977): Evolution of the pelvis in birds and dinosaurs. — In: S.M.Andrews, R.S,Miles, & A.D.Walker [eds], Problems in Vertebrate Evolution. Linnean Society Symposium Series4:319–357.

    Google Scholar 

  • Wesihampel, D.B. (1981): Acoustic analysis of potential vocalization in lambeosaurine dinosaurs (Reptilia: Ornithischia). — Paleobiology7: 252–261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carpenter, K. Forelimb biomechanics of nonavian theropod dinosaurs in predation. Senckenbergiana lethaea 82, 59–75 (2002). https://doi.org/10.1007/BF03043773

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043773

Key words

  • theropods
  • joint morphology
  • functional morphology