Skip to main content

Advertisement

Log in

Die Messung und Analyse der bioelektrischen myokardialen Impedanz als nichtinvasive Methode zur Abstoßungsdiagnostik nach Herztransplantation

The measurement and analysis of the bioelectrical myocardial impedance as a noninvasive method for rejection monitoring after heart-transplantation

  • Originalarbeiten
  • Published:
Zeitschrift für Herz-, Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

12 Beagle-Hunde wurden einer Halsherztransplantation unterzogen und mit Cyclosporin A und Methylprednisolon immunsupprimiert. Die intramyokardiale Impedanz wurde zweimal täglich über zwei im rechts- und linksventrikulären Myokard positionierte Schraubelektroden gemessen. Transmyokardiale Stanzbiopsien und das intramyokardiale Elektrogramm (IMEG) galten als Referenzmethoden. Insgesamt wurden 19 akuten Abstoßungsepisoden induziert. Nach histologischer Sicherung einer akuten Abstoßungsreaktion erfolgte die Abstoßungsbehandlung mit jeweils 125 mg Methylprednisolon-Stößen an fünf aufeinanderfolgenden Tagen sowie die Anhebung des Cyclosporin A-Spiegels auf suffiziente Werte. Alle Herzen zeigten unmittelbar nach Transplantation einen einheitlichen Impedanzabfall im hochfrequenten Bereich um 28,3%±5,5% und erreichten dann nach 8–10 Tagen ein stabiles Niveau. Solange keine Abstoßungsreaktionen induziert wurden blieben die Impedanzwerte unverändert. Die histologische Diagnose einer, akuten Abstoßungsreaktion Grad 1 A 1 B (ISHLT) wurde von einem Anstieg der Impedanzwerte um 12,2%±2,5%, bei Grad 2–3A um 19,2%±3,2% und bei Grad 3B-4 um 27,0%±2,9% begleitet. Die Sensitivität betrug 100%, die Spezifität 97%. Die erfolgreiche Behandlung einer Abstoßungsreaktion führte wieder zum Abfall der Impedanzwerte auf ihr Ausgangsniveau. Die Messung der intramyokardialen Impedanz kann im Bereich hoher Frequenzen zuverlässig Zustandsänderungen der Zellmembran und des Intrazellulärraumes während akuter Abstoßungsreaktionen nach Herztransplantation aufzeigen und ist ein zuverlässiger nichtinvasiver Parameter zur Graduierung des Schweregrades akuter Abstoßungsreaktionen. Ebenso ist die Kontrolle des Behandlungsverlaufs und-erfolges mittels Impedanz möglich. Diese nichtinvasive Methode ist mit einer dem Herzschrittmacher vergleichbaren implantierbaren telemetriefähigen Einheit anwendbar und ermöglicht die kontinuierliche Abstoßungsüberwachung des Patienten zu Hause ohne Klinikaufenthalt.

Summary

12 beagle dogs underwent neck-heart transplantation and were immunosuppressed with cyclosporine and methylprednisolone. Intramyocardial impedance was determined twice daily with four screw-in electrodes in the right and left ventricles. Transmyocardial biopsies and the intramyocardial electrogram (IMEG) were performed as reference methods. Nineteen rejection episodes were induced. When acute rejection was seen in histology the animals were treated with pulsed 125 mg methylprednisolone over 5 consecutive days and immunosuppression was raisod to sufficient levels. Successful treatment of rejection was controlled by biopsy. All hearts showed a uniform decrease of impedance of about 28.3%±5.5% immediately after implantation, then reaching a stable plateau after 7 to 8 days. Impedance values then remained unchanged as long as rejection was absent. Biopsy findings of grade 1A to 1B (ISHLT) were accompanied by statistically significant increase of impedance of 12.2%±2.5%; of grade 2 to 3A of 19,2% ±3.2% and of grade 3B to 4 of 27.0%±2.9%. Sensivity was 100%, specificity 97%. Successful treatment of rejection led to a uniform decrease of impedance to initial levels. Measurements of the intramyocardial impedance for high frequencies can reliably indicate alterations of the cell membrane and the intracellular space during acute cardiac allograft rejection. The amount of increase of impedance is a reliable nonivasive parameter to graduate acute cardiac allograft rejection. The success of treatment of rejection can also be monitored by impedance. This noninvasive method is applicable for telemetric rejection monitoring via an implantable device, which would allow continuous rejection surveillance of a patient at home without hospital admission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Kemnitz J, Cohnert T, Schäfers HJ, Helmke M, Wahlers T, Hermann G, Haverich AA (1987) classification of cardiac allograft rejection. A modification of the classification by Billingham. Am J Surg Pathol 11: 503–515

    Article  PubMed  CAS  Google Scholar 

  2. Chomette G, Auriol M, Cabrol C (1988) Chronic reJection in human heart transplantation. J Heart Transplant 7: 292–297

    PubMed  CAS  Google Scholar 

  3. Schroeder JS, Gao S, Hunt SA, Stinson EB (1992) Accelerated graft coronary artery disease. Diagnosis and prevention. J Heart Transplant 9: 258–266

    Google Scholar 

  4. Hosenpud JD, Novick RJ, Breen TJ, Dally OP (1994) The Registry of the International Society for Heart and Lung Transplantation. Eloventh Official Report-1994. J Heart Lung Transplant 13: 561–570

    PubMed  CAS  Google Scholar 

  5. Bieber CP, Hunt SA, Schwinn DA, et al. (1981) Complications in long-term survivors of cardiac transplantation. Transplant Proc 13: 207–211

    PubMed  CAS  Google Scholar 

  6. Palmer DC Heart graft arterlosclerosis (1985) Heart Transplant 39: 385–388

    CAS  Google Scholar 

  7. Griepp RB, Stinson EB, Bieber CP, et al. (1977) Control of graft arteriosclerosis in human heart transplant recipients. Surgery 81: 262–269

    PubMed  CAS  Google Scholar 

  8. Gao SZ, Schroeder JS, Alderman EL, et al. (1987) Clinical and laboratory correlates of accelerated coronary artery disease in the cardiac transplant patient Circulation 6 (Pt 2); V: 56–61

    Google Scholar 

  9. Miller LW, Wesp A, Jennison SH, et al. (1993) Vascular rejection in heart transplant recipients. J Heart Transplant 12: 147–152

    Google Scholar 

  10. Olsen SL, Wagoner LE, Hammond EH, et al. (1989) Vascular rejection in heart transplantation. Clinical correlation, treatment options and future considerations. J Heart Transplant 12: 135–142

    Google Scholar 

  11. Hammond EH, Yowell RL, Nunoda S, et al. (1989) Vascular (humoral) rejection in heart transplantation. Patho logicobservatio ns and clinical implications. J Heart Transplant 8: 430–443

    PubMed  CAS  Google Scholar 

  12. Uretsky B, Murali S, Reddy PS, et al. (1987) Development of conary artery disease in cardiac transplant patients receiving immunosuppressive therapy with cyclosporine and prednisone. Circulation 4: 827–834

    Google Scholar 

  13. Gao SZ, Alderman E, Schroeder JS, Silverman JS, Hunt SA (1988) Accelerated coronary vascular disease in the heart transplantpatient. Coronary arteriographic findings. J Am Coll Cardiol 334–340

  14. Tilney NL, Kupiec-Weglinsky JW (1991) The biology of acute transplant rejection. Ann Surg 214: 98–106

    PubMed  CAS  Google Scholar 

  15. Tilney NL, Kupiec-Weglinski JW (1989) Advances in the understanding of rejection mechanisms. Transplant Proc Vol 21. 1: 10–13

    PubMed  CAS  Google Scholar 

  16. Sibley RK (1989) Pathology and immunopathology of solid organ graft rejetion. Transplant Proc Vol 21, 1: 14–17

    PubMed  CAS  Google Scholar 

  17. Baldwin WM, Sanfilippo F (1989) Antibodies and graft rejection. Transplant Proc Vol 21, 1: 60568

    Google Scholar 

  18. Halloran PF, Cockfield SM, Madrenas J (1989) The mediators of inflammation (Interleukin 1, Interferon-r, and Tumor Necrosi Factor) and their relevance to rejection. Transplant Proc Vol 21, 1: 26–30

    PubMed  CAS  Google Scholar 

  19. Boyd AW, Novotny JR, Wicks IP, Salvaris E, Welch K, Wawryk SO (1989) The role of accessory molecules in Iymphocyte activation. Transplant Proc Vol 21, 1: 38

    PubMed  CAS  Google Scholar 

  20. Walz G (1990) Aktuelle Aspekte der Transplantationsimmunologie. Möglichkeiten einer selektien Immunsuppression. Z Transplantationsmedizin 2: 36–43

    Google Scholar 

  21. Hammer C, Ertel W, Reichenspurner H, Brendel W (1983) Immunologische Reaktionen nach Herztransplantation und ihre Nachweise. Fortschr Med 101, 44: 2041–2043

    PubMed  CAS  Google Scholar 

  22. Caves PK, Billingham ME, Schulz WP, Dong E, Shumway NE (1973) Transvenous biopsy from canine orthotopic heart allografts. Am Heart J 85: 525–530

    Article  PubMed  CAS  Google Scholar 

  23. Caves PK, Stinson EB, Billingham ME, Rider AK, Shumway NE (1973) Diagnosis of human cardiac allograft rejection by serial cardiac biopsy. J Thorac Cardiovasc Surg 66: 461–466

    PubMed  CAS  Google Scholar 

  24. Billingham ME (1981) Diagnosis of cardiac rejection by endomyocardial biopsy. J Heart Transplant 1: 25–30

    Google Scholar 

  25. Billingham ME, Cary NRB, Hammond EH, Kemnitz J, Marboe CM, McAllister HA, Snover DC, Winer GL, Zerbe AA (1990) working formulation for the standardization of nomenclature in the dignosis of heart and lung transplantation. J Heart Transplant 6: 587–593

    Google Scholar 

  26. Hausen B, Schäfers HJ, Kemnitz J, et al. (1991) Endomyokardbiopsie zur Abstoßungsdiagnostik nach Herztransplantation. Z Transplant 3. Jhg.: 10–17

    Google Scholar 

  27. Park J, Warnecke H, Deng M, Heinrich KW, Hetzer R (1991) Frühdiastolische Ventrikelfunktionsanalyse zur Anstoßungsdiagnostik nach Herztransplantation: eine prospektive, serielle, echokardiographische Studie. Z Transplant 3. Jhg.: 33–38

    Google Scholar 

  28. Störk TH, Möckel M, Eichstädt H, Walkowiak T, Siniawski H, Müller R, Hetzer R (1991) Noninvasive diagnosis of cardiac allograft rejection by means ofpulsed doppler and m-mode-ultrasound. J Ultrasound Med Vol 10, 10: 569–575

    PubMed  Google Scholar 

  29. Angermann CE, Spes CH, Hart RJ, Kemkes BM, Theisen K. Echokardiographische Diagnostik nach orthotoper Herztransplantation. Z Herz-, Thorax-und Gefäßchirurgie 3, Supp, 1: 1–10

  30. Park J, Urbancyk M, Schüler S, et al. (1989) Assessment of acute cardiac rejection based on M-mode echocardiographic parameter of left ventricular early diastolic function. Z Kardiol 78: 66–673

    Google Scholar 

  31. Wamecke H, Hetzer R, Schüler S, et al. (1985) Das intramyokardiale Elektrogramm zur nichtinvasiven Abstoßungsdiagnostik nach Herztransplantation. J Thorac Cardiovasc Surg 33/1: 47

    Google Scholar 

  32. Warnecke H, Schüler S, Hetzer R, et al. (1986) Noninvasive monitoring of cardiac allograft rejection by intramyocardial electrogram recordings. Circulation 74, Suppl 3: 72

    Google Scholar 

  33. Diemel KD. Das intramyokardiale Elektrogramm (IMEG) — Grundlagen und klinische Awendung zur nichtinvasiven Abstoßungsdiagnostik nach Herztransplantation. Dissertation 1991, FU Berlin

  34. Müller J, Warnecke H, Schüler S, Hetzer R, et al (1990) Present state of continous remote — control of rejection after heart transplantabon. Eur Heart J 11: 438

    Google Scholar 

  35. Warnecke H, Müller J, Cohnert T, Heter R, et al (1992) Clinical heart transplantation without routine endomyocardial biopsy. J Heart Transplant 11: 1093–1102

    CAS  Google Scholar 

  36. Hammer C, Reichenspurner H, Ertel W, et al (1984) Cytological and Immunologic monitoring of Cycriosporine-treated human heart recipients. J Heart Transplant III, 3: 228

    Google Scholar 

  37. Ertel W, Reichenspurner H, Hammer C, et al. (1985) Cytoimmunological Monitoring. A method to reduce biopsy frequency after cardiac transplantation. Transplant Proc 17: 204–206

    Google Scholar 

  38. Lersch C, Hammer C, Plahl M, Lehmann M, Reichenspurner H, Reichart B (1985) Differential diagnosis between rejection and infection arising in the peripheral blood in heart transplant recipients. in: F. Stelzner (Hrsg.). Chir. Forum ’85 experiment. u. klinische Forsch., Springer-Verl., Berlin-Heidelberg 179–181

    Google Scholar 

  39. Wijngaard PLJ, van der Meulen A, Schuurman HJ, et al. (1989) Cytoimmunological monitoring for the diagnosis of acute rejection after heart transplantation. Transplant Proc Vol 21, 1: 2521–2522

    PubMed  CAS  Google Scholar 

  40. Jutte NHPM, Daane R, van den Bemd JMG et al. (1989) Cytoimmunological monitoring to detect rejection after heart transplantation. Transplant Proc Vol 21, 1: 2519–2520

    PubMed  CAS  Google Scholar 

  41. Hammer C, Klanke D, Lersch C, et al. (1989) Cytoimmunologic monitoring (CIM) for differentiation between cardiac rejection and viral, bacterial, or fungal infection. Its Specificity and Sensivity. Transplant Proc Vol 21, 4: 3631–3633

    PubMed  CAS  Google Scholar 

  42. Keren A, Gillis AM, Freedman RA, Baldwin JC, Billingham ME, et al. (1984) Heart transplant rejection monitored by signal-averaged electrocardiography in patients receiving cyclosporine. Circulation 70: 124–129

    Google Scholar 

  43. Haberl R, Reichenspurner H, Kemkes B (1986) Frequenzanalyse des Oberflächen-EKG zur Erkennung von Abstoßungsreaktionen nach Herztransplantation. Z Kardiol 75, Suppl 1: 77

    Google Scholar 

  44. Haberl R, Weber M, Reichenspurner H, et al. (1987) Frcquency analysis of the surface electrocardiogram for recognition of acute rejection after orthotopic cardiac transplantation in man. Circulation 76: 101–108

    PubMed  CAS  Google Scholar 

  45. Locke TJ, Kamik R, McGregor CGA, Bexton RS (1989) The value of the electrocardiogramm in the diagnosis of acute rejection after orthotopic heart transplantation. Transplant Int 2: 143–146

    CAS  Google Scholar 

  46. Reith R, Haberl R, Luchner A, et al. (1991) Erkennung akuter Abstoßungsreaktionen mit Fourier-Transformation des Oberflächen-EKG im Langzeitverlauf nach Herztransplantation. Z Kardiol 80: 258–265

    PubMed  CAS  Google Scholar 

  47. Ambrosini M, Cugini P, Scibilia G, et al. (1991) The disappearance of the circadian rythm of the heart rate in heart transplantation in the presence of acute rejection. Cardiologia 36 (6): 445

    PubMed  CAS  Google Scholar 

  48. Folino AF, Buja G, Miorelli M, et al. (1993) Heart rate variability in patients with orthotopic heart transplantation. Long-term follow up. Clin Cardiol 16 (7): 539–542

    Article  PubMed  CAS  Google Scholar 

  49. Zeuzem S, Olbrich HG, Seeger C, et al. (1991) Beat-to-beat variatio of heart rate in diabetic patient with autonomic neuropathy and denervated patient following orthotopic heart transplantation. Int J Cardiol 33 (1); 105–114

    Article  PubMed  CAS  Google Scholar 

  50. Fieguth HG, Wahlers T, Dammenhayn L, Cremer J, Hadam M, Haverich A (1989) Flowcytometry of lymphocyte subsets for detection of allograft rejection in cardiac transplant patients. J Heart Transplant 8: 87

    Google Scholar 

  51. Cohnert TR, Kemnitz J, Haverich A, Uysal A, Borst HG, Georgli A (1989) Nuclear activation of mononuclear cells in peripheral blood — a new non-invasive method for the assessment of cardiac allograft rejection. J Heart Transplant 8: 87

    Google Scholar 

  52. Havel M et al. (1985) Früherkennung von Abstoßungskrisen mit nichtinvasiven immunologischen Parametern bei herztransplantierten Patienten. in: Helmer F, Horcher E (Hrsg.); Kongreßbericht der 26. Tagung der Österreichischen Gesellschaft für Chirurgie und der ihr assozierten Fachgesellschaft, Wien, 120

  53. Havel M, Laczkovics A, Teufelsbauer H, et al. (1989) Neopterin as a marker to detect acute rejection after heart transplantation. J Heart Transplant 8: 167–170

    PubMed  CAS  Google Scholar 

  54. Carrio I, Berna L, Ballester M, Estorch M, Obrador D, Cladellas M, Ginjaume M (1988) Indium-111-Antimyosin-Scintigraphy to assess myocardial damaga in patients with suspected myocarditis and cardiac rejection. J Nucl Med 29: 1893–1900

    PubMed  CAS  Google Scholar 

  55. Schütz A, Engelhardt M, Breuer M, Brandl U, Kugler C, Kissel C, Kemkes BM (1990) Indium-111-Antimyosin zur Erkennung von Abstoßungsreaktionen. Z Herz-, Thorax- und Gefäschirurgie 4: 160

    Google Scholar 

  56. Kurland RJ, West J, Kelley S, Shoop JD, Harris R, Carr ER, et al. (1989) Magnetic resonance imaging to detect heart transplant rejection. Sensivity and Specificity. Transplant Proc Vol 21, 1: 2537–2543

    PubMed  CAS  Google Scholar 

  57. Rienmüller R, Gärtner CH, Lloret JJ, Schütz A, Tiling R, Kemkes BM, v Scheidt W MR-Ergebnisse einer 4jährigen Studie in der postoperativen Nachsorge herztransplantierter Patienten. Lissner J, Mogulia A, Doppmann J (Hrsg.) MR-89; Deutscher ÄV-Köln: 166–175

  58. Aherne T, Tscholakoff D, Finkbeiner W, Sechtem U, Derugin N, Yee E, Higgins CB (1986) Magnetic resonance imaging of cardiac transplants. The evaluation of rejection of cardiac allografts with and without immunosuppression. Circulation 74, 1: 145

    PubMed  CAS  Google Scholar 

  59. Tscholakoff D, Aherne TH, Yee ES, Derugin N, Higgins CB (1985) Cardiac transplantation in dogs. Evaluation with MR. Radiology 157: 679–702

    Google Scholar 

  60. Sasaguri S, LaRaia PJ, Fabri BM, et al. (1985) Early detection of cardiac allograft with proton nuclear magnetic resonance. Circulation 72, Suppl 2: 231

    Google Scholar 

  61. Schwan HP (1955) Application of UHF-impedance — Measuring techniques in biophysics. Tr Inst Radio Eng (Med Electronics); 3: 75–83 (Transactions of the IRE)

    Google Scholar 

  62. Pauly H, Schwan HP (1959) Uber die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale. Z Naturforschung 14b: 125

    CAS  Google Scholar 

  63. Schwan HP (1963) Determination of biological impedances. Phys Tech Biol Res; Nastuk WL (ed.) Acad Press, New York, Vol 6, Part B: 323–407

    Google Scholar 

  64. Hammond EH, Hansen JK, Spencer LS, Jensen A, Yowell RL (1993) Immunfluorescence of endomyocardial biopsy specimens. Methods and interpretation. J Heart Transplant 12: 113–124

    Google Scholar 

  65. Whalen DA, Hamilton DG, Ganote CE, Jennings RB (1974) Effect of a transient period of ischemia on myocardial cells: I. Effects on cell volume regulation. Am J Pathol 74: 381–398

    PubMed  CAS  Google Scholar 

  66. Sperelakis N, Hoshiko T (1961) Electrical impedance of cardiac muscle. Circ Res 9: 1280–1283

    PubMed  CAS  Google Scholar 

  67. Tranum-Jensen J, Janse MJ, Fiolet JTW, et al. (1981) Tissue osmolality, cell swelling and reperfusion in acute regional myocardial ischemia in the isolated porcine heart. Circ Res. 1981; 49: 364–381

    PubMed  CAS  Google Scholar 

  68. Gersing E, Gebhardt MM, Brockhoff Bretschneider HJ. Assessment of myocardial ischemic stress by electrical tissue impedance. 4. Mediterrean Conf Med and Biol Eng Sept 1986; Sevilla, Spain: 161–163

  69. Koike K, Hesslein PS, Dasmahapatra, HK, et al. (1988) Telemetric detection of cardiac allograft rejection-correlation of electrophysiological, histological and biochemical changes during unmodified rejection. Circulation Vol 78, 3, Suppl 1: 1/106–1/112

    Google Scholar 

  70. Romaschin AD, Rebeyka I, Wilson GJ, et al. (1987) Conjugated dienes in ischemic and reperfused myocardium. An in vivo chemical signature of oxygen free radical mediated injury. J Moll Cell Cardiol 19: 389–402

    Article  Google Scholar 

  71. Slater TF (1984) Free-radical mechanism in tissue injury. Biochem J 1984; 222: 1

    PubMed  CAS  Google Scholar 

  72. Wearns SW, Shea MJ, Lucchesi BR, et al. (1986) Free radicals and myocardial injury. Pharmacologic implications. Circulation 74: 1–5

    Google Scholar 

  73. Fourcade C, Descotes J (1975) Die bioelektrische Impedanz. Eine einfache Technik zur Diagnose des Zelltodes. Triangel Band 13, 4: 173–183

    Google Scholar 

  74. Pethig R, Kell DB (1982) The passive electrical properties of biological systems. Their significance in physiology, biophysics and biotechnology. Phys Med Biol 32: 933–970

    Article  Google Scholar 

  75. Gersing E, Preusse CJ, Gebhardt MM, Ponizy A, Bretschneider HJ (1982) Electric impedance spectroscopy for monitoring myocardial ischemic stress. World Congr Med Physics Biomed Eng Hamburg, Kongreßband

  76. Gersing E (1982) Impedanzspektroskopie als Hilfe bei Herzoperationen. Elektronik 9: 88–90

    Google Scholar 

  77. Gersing E, Gebhardt MM, Bretschneider HJ (1985) Bestimmung der Wiederbelebbarkeit des ischämischen Herzens über die elektrische Impedanz. Biomed Technik Band 30, Ergänzungsband: 18–19

    Google Scholar 

  78. Gersing E (1991) Messung der elektrischen Impedanz von Organen — Apparative Ausrüstung für Forschung und klinische Anwendung. Biomed Technik Band 36; Heft 1–2: 6

    CAS  Google Scholar 

  79. Schwan HP, Kay CF (1957) Capacitive properties of body tissue. Circ Res Vol 4: 439

    Google Scholar 

  80. Pliquett F (1986) Pulse impedance method and its application in medical physics. in: Markov M, Blank M (eds), Proc Pleven Conf 1986; New York, Plenum Press 89–97

    Google Scholar 

  81. Warner A (1988) The gap junction. J Cell Sciences 89: 1–7

    Google Scholar 

  82. Severs NJ (1990) The cardiac gap junction and intercalated disc. Review. Int J Cardiol 26: 137–173

    Article  PubMed  CAS  Google Scholar 

  83. Manjunath CK, Goings GE, Page E (1987) Human cardiac gap junctions. Isolation, ultrastructure and protein composition. J Moll Cell Cardiol 19: 131–134

    Article  CAS  Google Scholar 

  84. White RL, Spray DC, Campos de Carvalho AC, Wittenberg BA, Bennett MVL (1985) Some electrical and pharmacological properties of gap junctions between adult ventricular myocytes. Am J Physiol 249, Cell Physiol 18: 447–455

    Google Scholar 

  85. Forbes MS, Sperelakis N (1985) Intercalated discs of mammalian heart. A review of structure and function. Tissue & Cell 17 (5): 605–648

    Article  CAS  Google Scholar 

  86. Ellenby MI, Small KW, Wells RM, Hoyt DJ, Lowe JE. On-line detection of reversible myocardial ischemic injury by measurement of myocardial electrical impedance. Ann Thorac Surg 187; 44: 587–597

  87. Kinnen E (1970) Cardiac output from transthoracic impedance variations. Ann NY Acad Scien Vol. 170, Art 2: 747–756

    Article  Google Scholar 

  88. Namon R, Gollan F (1970) The cardiac electrical impedance pulse. Ann NY Acad Scien Vol 170, Art 2: 733–746

    Article  Google Scholar 

  89. Kubicek WG, Patterson RP, Witsoe DA (1970) Impedance cardiographie as a noninvasive method of monitoring cardiac functions and other parameters of the cardiovascular system. Ann NY Acad Scien Vol 170, Art 2: 724

    Article  Google Scholar 

  90. Krohn BG, Dunne EF, Hanish H, Magidson O, Kay HJ (1970) The basis of the electrical impedance cardiogram. Ann NY Acad Scien Vol 170, Art 2: 714

    Article  Google Scholar 

  91. Gollan F, Namon R (1970) Electrical impedance of pulsatile blood flow in rigid tubes and in isolated organs. Ann NY Acad Scien Vol 170, Art 2: 568

    Article  Google Scholar 

  92. Preusse CJ, Gersing E, Gebhardt MM, Ponizy, Schnabel PH, Bretschneider HJ (1982) Intraoperative atraumatic monitoring of myocardial revivability by continous or intermittent measurement of electrical impedance of the heart. J Thorac Cardiovasc Surg Special Issue 1, 30: 18

    Google Scholar 

  93. Garrido H, Sueiro J, Rivas J, Vilches J, Romero JM, Ganrido F (1983) Bioelectrical tissue resistance during various methods of myocardial preservation. Ann Thorac Surg 36: 143–151

    Article  PubMed  CAS  Google Scholar 

  94. Preusse CJ, Gersing E, Gebhardt MM, Ponizy, Schnabel PH, Bretschneider HJ (1981) Different behavior of the electrical impedance of the myocardiumin nommothermia after use of various cardioplegic methods. Pflügers Arch ges Physiol/Europ J Physiol 391

  95. Schmidt Ch, Schima H, Raderer F, Wieseithaler G (1992) Meßgerät zur Erfassung der elektrischen Impedanz des Herzens in der klinischen Anwendung. Biomed Technik 37: 109–114

    Article  CAS  Google Scholar 

  96. Gersing E, Preusse CJ, Gebhardt MM, Bretschneider HJ (1981) Use of electrical impedance spectroscopy for surveillance of the myocardial ischemic stress. Pflügers Arch ges Physiol/Europ J Physiol 359

  97. Gebhardt MM, Gersing E, Brockhoff CJ, Schnabel A, Bretschneider HJ (1987) Impedance-Spectroscopy: A method for surveillance of ischemia tolerance of the heart. Thorac Cardiovasc Surg 35: 26–32

    Article  Google Scholar 

  98. Gersing E, Bach F, Gebhardt MM, Kehrer G, Meissner A, Bretschneider H (1990) Monitoring alterations caused by ischemic in organ tissue by electrical impedance spectroscopy. Int Fed Med and Biol Eng (Biomed Eng); 19.–22. Nov. 1990, Antwerpen.

  99. Fallert MA, Mirotznik MS, Downing SW, et al. (1993) Myocardial electrical impedance mapping of ischemic sheep hearts and healing aneurysms. Circulation 87: 199

    PubMed  CAS  Google Scholar 

  100. Kleber AG, Riegger CB, Janse MJ (1987) Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circ Res 61: 271–279

    PubMed  CAS  Google Scholar 

  101. Pauly H (1962) Electrical properties of the cytoplasmatic membrane and the cytoplasm of bacteria and of protoplasts. IRE Trans Biomed Electron 9: 93–95

    Article  PubMed  Google Scholar 

  102. Plonsey R, Barr RC (1986) A critique of impedance measurements in cardiac tissue. Ann Biomed Eng 14: 307

    Article  PubMed  CAS  Google Scholar 

  103. Maxwell JC (1873) Treatise onelectricity and magnetism. Part II.: Chapter V., VI., XII.. Clarendon Press Oxford

    Google Scholar 

  104. Fricke H, Morse S (1925) The electric resistance and capacity of blood for frequencies between 800 and 4,5 million cycles. Phys Rev 9: 153–167

    CAS  Google Scholar 

  105. Fricke H (1925) A mathematical treatment of the electric conductivity and capacity of disperse systems. Part 11. Phys Rev 26: 678–681

    Article  Google Scholar 

  106. Cole KS (1928) Electric impedance of suspensions of spheres. J Gen Physiol 12: 29

    Article  CAS  PubMed  Google Scholar 

  107. Cole KS (1932) Electric phase angle of cell membranes. J Gen Physiol 15: 641–649

    Article  CAS  PubMed  Google Scholar 

  108. Schwan HP (1965) Electrode polarization in AC steady state impedance studies of biological systems. Digest 6th Inter Conf Med Electr and Biol Eng, Tokyo

  109. Schwan HP (1966) Alternating current electrode polarization. Biophysik 3: 181–201

    Article  PubMed  CAS  Google Scholar 

  110. Davey CL, Markx GH, Kell DB (1990) Substitution and spreadsheet methods for analysing dielectrical spectra of biological systems. Eur Biophys J 18: 255–265

    Article  Google Scholar 

  111. Schwan HP (1955) Electrical properties of body tissue and impedance plethysmography. Tr Inst Radio Eng (Med Electronics) 3: 32–46

    Google Scholar 

  112. Schwan HP (1968) Electrode polarization impedance and measurement in biological materials. Ann NY Acad Scien 148 (1): 191–209

    Article  CAS  Google Scholar 

  113. Rush S, Abildskov JA, McFee, R (1963) Resistivity of body tissues at low frequency. Circ Res 12: 40–50

    PubMed  CAS  Google Scholar 

  114. van Oosterom A, de Boer RW, van Dam RT (1979) Intramural resistivity of cardiac tissue. Med Biol Eng Comput 17: 337–343

    Article  PubMed  Google Scholar 

  115. Roberts DE, Scher AM (1982) Effect of anisotropy on extracellular potential fields in canine myocardium in situ. Circ Res 50: 342–351

    PubMed  CAS  Google Scholar 

  116. Roberts DE, Hersh LT, Scher AM (1979) Influence of cardiac fiber orientation on wavefront votage, conduction velocity and tissue resistivity in the dog. Circ Res 44: 701

    PubMed  CAS  Google Scholar 

  117. Ikeda K, Hiraoka M (1982) Effects of hypoxia on passive electrical properties of canine muscle. Pflügers Arch 393: 45–50

    Article  PubMed  CAS  Google Scholar 

  118. Wojtczak J (1979) Contractures and increase in internal longitudinal resistance of cow ventricular muscle induced by hypoxia. Circ Res 44: 88–95

    PubMed  CAS  Google Scholar 

  119. Sperelakis N, Macdonald RL (1974) Ratio of transverse to longitudinal resistivities of isolated cardiac muscle fiber bundles. J Electrocardiol 301–314

  120. Alvarez J, Rousseau G, Dorticos F, Morlans J (1989) Effects of manganese chloride, verapamil and hypoxia on the rate-dependent increase in internal longitudinal resistance of rabbit myocardium. Can J Physiol Pharmacol 67: 263–268

    PubMed  CAS  Google Scholar 

  121. Schwan HP, Kay CF (1956) Specific resistance of body tissue. Circ Res Vol 4: 664 ff.

    PubMed  Google Scholar 

  122. Schwan HP, Ferris CD (1963) Four electrode null techniques for biological impedance work. Proc 16th Ann Conf Eng Med and Biol 84–85

  123. Schwan HP, Ferris CD (1968) Four-electrode null techniques for impedance measurements with high resolution. Rev Sci Instr 39: 481

    Article  Google Scholar 

  124. Plonsey R, Barr R (1982) The four electrode technique as applied to cardiac muscle. IEEE Trans Biomed Eng 29: 541–546

    Article  PubMed  CAS  Google Scholar 

  125. Schwan HP (1927) Electrical properties of tissue and cell suspension. Advances in Biological and Medical Physics (Lawrence JH, Tobias CA (eds.). Acad Press New York, Vol 5: 147–209

    Google Scholar 

  126. Nyboer J (1970) Electrorheometric properties of tissue and fluids. Ann NY Acad Scien Vol 170; Art 2: 410

    Article  CAS  Google Scholar 

  127. Mann FC, Priestley JT, Markewitz J, Yaler WM (1933) Transplantation of the intact mammalian heart. Arch Surg 26: 219–224

    Google Scholar 

  128. Markewitz A, Wenke K, Weinhold C (1988) Reliability of atrial screw-in leads. PACe Vol 11, Part, 11: 777–1783

    Google Scholar 

  129. Haverich, et al. (1984) Asymmetric pattem of rejection following orthotopic cardiac transplantation in primates. Heart Transplant 3: 280–285

    Google Scholar 

  130. Topalidis T, Warnecke H, Mueller J, Hetzer R (1990) Endomyocardial biopsies for diagnosis of rejection. The potential margin of error. Transplant Proc 22: 1443

    PubMed  CAS  Google Scholar 

  131. Spiegelhalter DJ, Stovin PG (1982) An analysis of repeated biopsies following cardiac transplantation. Statistics in Medicine 2: 33–40

    Article  Google Scholar 

  132. Beyersdorf F, Schneider M, Kreuzer J, Falk S, Zegelman S, Satter P (1988) Studies of the tissue reaction induced by transvenous pacemaker electrodes. 1: Microscopic examinations of the exent of connective tissue around the electrode tip in the human right ventricle. PACE Vol 11, Part II: 1753–1759

    PubMed  CAS  Google Scholar 

  133. Melby JC (1977) Clinical pharmacology of systemic corticosteroids. Ann Rev Pharmacol Toxicol 17: 511–527

    Article  CAS  Google Scholar 

  134. Rushmer RF, Crystal DK, Wagner C, Elli RM (1953) Intracardiac impedance plethysmography. Am J Physiol Vol. 174: 171–174

    PubMed  CAS  Google Scholar 

  135. Bashore TM, Burks JM, Wagner GS (1982) The Epicardial screw-on electrode. PACE Vol 5: 59–66

    PubMed  CAS  Google Scholar 

  136. Ripart A, Mugica J (1983) Elektrode-heart interface. Definition of the ideal electrode PACE. Vol 6, Part II: 410–421

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfitzmann, R., Müller, J., Grauhan, O. et al. Die Messung und Analyse der bioelektrischen myokardialen Impedanz als nichtinvasive Methode zur Abstoßungsdiagnostik nach Herztransplantation. Z. Herz-, Thorax-, Gefäßchir. 11, 47–61 (1997). https://doi.org/10.1007/BF03043238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043238

Schlüsselwörter

Key words

Navigation