Skip to main content

Advertisement

Log in

Die Biocompound-Gefäßprothese in der aorto-koronaren Bypasschirurgie

The biocompound graft prosthesis in coronary artery bypass surgery

  • Originalarbeit
  • Published:
Zeitschrift für Herz-, Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Für die Koronarrevaskularisation wurden varilös-ektatisch veränderte Venen bisher wegen ungünstiger Strömungsdynamik und hohen Verschlußraten nicht verwendet. Die Verarbeitung der patienteneigenen Vene zum Biocompound-Graft, d. h. zu einer hochflexiblen Hybridprothese, verbessert das Strömungsprofil im Bypass in entscheidender Weise. Beim Biocompound-Graft wird die Vene mit einem feinsten ultraflexiblen Geflecht intraoperativ ummantelt und mit diesem mit Fibrinkleber verbunden. Der Netzschlauch wird mit Hilfe eines Applikationssets über die varikös-ektatisch veränderte Vene gezogen. Bei 80 Patienten (35 Frauen, 45 Männer), bei denen keine Möglichkeit der Verwendung alternativer Bypässe bestand, kam das Biocompound-Graft als aortokoronarer Bypass zur Anwendung. In 17 Fällen wurde die Operation notfallmäßig, bei 8 Patienten eine Reoperation durchgeführt. Sieben Patienten waren wegen Polymorbidität und des schlechten Venenstatus bereits von anderen Zentren abgelehnt worden. Durchschnittlich wurden 3,1±0,9 Bypässe angelegt (138 Biocompounds, 65 Venen, 45 Aa. thoracicae int., insgesamt 248 Bypässe). Das Follow-up beträgt 9,3±4,4 Monate (Maximum 24 Monate, Minimum 2 Monate). 79 von 80 Patienten konnten nachkontrolliert werden. Die Frühverschlußrate betrug 6,5%. Die Frühmortalität lag bei 3,8% (3 Patienten mit autoptisch offenen Bypässen in allen Fällen). Es traten keine Graftinfekte auf. Eine Patientin wurde 5 Monate postoperativ wegen eines technischen Anastomosenproblems reoperiert. Während des Follow-up’s verstarben 6 Patienten. Die Ursache war in 2 Fällen kardial, in weiteren 2 Fällen pulmonal. Ein Patient verstarb an einer Sepsis, bei einem Patienten ist die Todesursache unbekannt. 79,6% der Patienten beurteilten ihren Zustand besser als präopertiv, 85,7% benötigen keine Nitrate mehr. Die Resultate belegen bei dieser Gruppe polymorbider und operationstechnisch schwieriger Fälle die Einfachheit und Sicherheit der Methode. Das Biocompound-Graft bietet dem Chirurgen die Möglichkeit, bei Mangel an alternativen Bypässen varikös-ektatische Venen zu verwenden.

Summary

The use of varicose-ectatic veins as graft material in bypass surgery is unsatisfactory due to their unfavorable flow dynamics and high closure rates. Creating a biocompound graft with the patients’s vein enables the surgeon to use a simple technique to influence the bypass graft’s flow profile. A biocompound graft is created by encasing intraoperatively the vein in an extremely fine ultraflexible metal mesh and joining the two with fibrin glue. The mesh hose is pulled over the entire length of the vein with the aid of an application set. Biocompound grafts were used for aortocoronary bypass in 80 patients (35 women, 45 men) for whom no alternative graft was available. Seventeen patients were operated under emergency conditions. Redosurgery was performed on eight patients. Seven patients had been refused treatment at other facilities. An average of 3.1±0.9 bypass grafts were used (138 biocompound, 65 saphenous veins, 45 internal thoracic arteries, 248 bypasses altogether). The follow-up period was 9.3±4.4 months (maximum 24 months, minimum 2 months). The follow-up included 79 of 80 patients. Incidence of early bypass-closure was 6.5%. In-hospital mortality was 3.8% (three patients). In each case autopsy proved the bypasses being patent. No incidence of graft infection was observed. A female patient was reoperated 5 months postoperatively due to a technical anastomosis problem. There were six late deaths (two cardiac death, two pulmonary failures, one sepsis, one unknown). At follow-up 79.6% of the patients judged their cardiac condition to be better than before the operation and 85.7% were free of nitrate usage. In conclusion, the results prove the simplicity and reliability of this method in technically difficult cases. The biocompound graft gives the surgeon the possibility of using varicose-ectatic veins as bypass graft material if no alternative graft is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Angelini GD, Bryan AJ, Wiliams HMJ, Morgan R, Newby AC (1990) Distention promotes platelet and leukocyte adhesion and reduces short-term patency in pig arteriovenous bypass grafts. J Thorac Cardiovasc Surg 99: 433–439

    PubMed  CAS  Google Scholar 

  2. Angelini GD, Bryan AJ, Wiliams HMJ, Soyombo AA, Wiliams A, Tovey J, Newby AC (1992) Time-course of medial and intimal thickening in pig venous arterial grafts: Relationship to endothelial injury and cholesterol accumulation. J Thorac Cardiovasc Surg 103: 1093–1103

    PubMed  CAS  Google Scholar 

  3. Angelini GD, Izzat MB, Bryan AJ, Newby AC External stenting reduces early medial and neointinal thickening in a pig model of arteriovenous bypass grafting. Submitted in Europ J Cardiovasc Surg

  4. Angelini GD, Newgy AC (1989) The future of saphenous vein as a coronary artery bypass conduit. European Heart J 10: 273–280

    CAS  Google Scholar 

  5. Angelini GD, Soyombo AA, Newby AC (1991) Smooth muscle cell proliferation in response to injury in an organ culture of human saphenous vein. Eur J Vasc Surg 5: 5–12

    Article  PubMed  CAS  Google Scholar 

  6. Barker SGE, Talbert A, Cottam S, Baskerville PA, Martin JF (1993) Arterial intimal hyperplasia after occlusion of the adventitial vasa vasorum in the pig. Atherosclerosis and Thrombosis 13: 70–77

    CAS  Google Scholar 

  7. Barker SGE, Tilling LC, Miller GC, Beesley JE, Fleetwood G, Stavri GT, Baskerville PA, Martin JF (1994) The adventitia and atherogenesis: removal initiatia and atherogenesis: removal initiates intimal proliferation in the rabbit which regresses on generation of a neoadventitia. Atherosclerosis 105: 131–144

    Article  PubMed  CAS  Google Scholar 

  8. Barra JA, Volant, Leroy JP, Braesco J, Airiau J, Boschat J, Blanc JJ, Penther P (1986) Constrictive perivenous mesh prosthesis for preservation of vein integrity. J Thorac Cardiovasc Surg 92: 330–336

    PubMed  CAS  Google Scholar 

  9. Batellier J, Tedgui A (1992) Atherogenesis reduction of an arterialized venous graft using an external sleeve. Chirurgie 118: 659–664

    PubMed  CAS  Google Scholar 

  10. Blankenhorn, DH, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, Cashin-Hemphill L (1987) Beneficial effect of combined colestipol-niacin therapy on coronary vein bypass grafts. J Am Med Assoc 257: 3233–3249

    Article  CAS  Google Scholar 

  11. Boerboom LE, Olinger GN, Bonchek LI, Gunay II, Kissebah AH, Rodriguez ER, Ferrans VJ (1985) The relative influence of arterial pressure versus intra-operative distention on lipid accumulation in primate vein bypass grafts. J Thorac Cardiovasc Surg 90: 756–764

    PubMed  CAS  Google Scholar 

  12. Brody JL, Pickering NJ, Capuzzi DM, Ph D, Fink GB, Can CA, Gomez AF (1992) Interleukin-1α as a factor in occlusive vascular disease. Am J Clin Pathol 97: 8–13

    PubMed  CAS  Google Scholar 

  13. Brody WR, Kosek JC, Angell WW, Alto P (1972) Changes in vein grafts following aorto-coronary bypass induced by pressure and ischemia. J Thorac and Cardiac Surg 64: 847–854

    CAS  Google Scholar 

  14. Brody WR, Angell WW, Kosek JC (1972) Histologic fate of the venous coronary artery bypass in dogs. Am J Pathol 66: 111–130

    PubMed  CAS  Google Scholar 

  15. Campeau L, Enjalbert M, Lespérance J, Vaislic C, Grondin CM, Bourassa MG (1983) Atherosclerosis and late closure of aortocoronary saphenous vein grafts: sequential angiographic studies at 2 weeks, 1 year, 5 to 7 years, and 10 to 12 years after surgery. Circulation 68 (suppl II): 1–7

    Google Scholar 

  16. Catinella FP, Cunningham JN, Jr, Srungaram RK, Baumann FG, Ph D, Nathan IM, Ph D, Glassman EA, Knopp EA, B S, Spencer FC (1982) The factors influencing early patency of coronary artery bypass vein grafts. J Thorac Cardiovasc Surg 83: 686–700

    PubMed  CAS  Google Scholar 

  17. Cooper GJ, Underwood MJ, Deverall PB (1996) Arterial and venous conduits for coronary artery bypass: A current review. Eur J Cardio-thorac Surg 10: 129–140

    Article  CAS  Google Scholar 

  18. Dilley RJ, Mc Geachie JK, Prendergast FJ (1988) A review of the histological changes in vein to artery grafts, with particular reference to intimal hyperplasia. Arch Surg 123: 691–696

    PubMed  CAS  Google Scholar 

  19. Duan B, Zamir M (1995) Mechanics of wave reflections in a coronary bypass loop model: the Possibility of partial flow cut-off. J Biomechanics 28: 567–574

    Article  CAS  Google Scholar 

  20. Eritsland J, Arnesen H, Gronseth K, Fjeld NB, Abdelnoor M (1996) Effect of dietary supplementation with n−3 fatty acids on coronary artery bypass graft patency. Am J Cardiol 77: 31–36

    Article  PubMed  CAS  Google Scholar 

  21. Fonkalsrud EW, Sanchez M, Zerubavel R (1978) Morphological evaluation of canine autogeneous vein grafts in the arterial circulation. Surgery 84: 253–264

    PubMed  CAS  Google Scholar 

  22. Francis SE, Hunter S, Holt CM, Gadsdon PA, Rogers S, Duff GW, Newby AC, Angelini GD (1994) Release of platelet-derived growth factor activity from pig venous arterial grafts. J Thorac Cardiovasc Surg 108: 540–548

    PubMed  CAS  Google Scholar 

  23. Fuster V, Badimon L, Badimon J, Chesebro JH (1992) The pathogenesis of coronary artery disease and acute coronary syndromes (part I) N Engl J Med 326: 242–250

    PubMed  CAS  Google Scholar 

  24. Fuster V, Badimon L, Badimon J, Chesebro JH (1992) The pathogenesis of coronary artery disease and acute coronary syndromes (part II) N Engl J Med 326: 310–318

    PubMed  CAS  Google Scholar 

  25. Galand P, Degraef C (1989) Cyclin/PNA immunostaining as an alternative to tritiated thymidine pulse labelling for marking S phase cells in paraffin sections from animal and human tissues. Cell Tissue Kinet 22: 383–392

    PubMed  CAS  Google Scholar 

  26. Glagov S, Zarins CK, Masawa N, Xu CP, Bassiouny H, Giddens DP (1993) Mechanical functional role of non-atheroscleortic intimal thickening. Frontiers Med Biol Engng 5: 37–43

    CAS  Google Scholar 

  27. Golden MA, Au YPT, Kenagy RD, Clowes AW (1990) Growth factor gene expression by intimal cells in healing polytetrafluoroethylene grafts. J Vasc Surg 11: 580–585

    Article  PubMed  CAS  Google Scholar 

  28. Golden MA, Au YPT, Kirkman TR, Wilcox JN, Raines EW, Ross R, Clowes AW (1991) Platelet-derived growth factor activity and mRNA expression in healing vascular grafts in baboons. J Clin Invest 87: 406–414

    Article  PubMed  CAS  Google Scholar 

  29. Goldman S, Copeland J, Moritz T, Henderson W, Zadina W, Ovitt T, Kern KB, Sethi G, Sharma GV, Khuri S (1991) Starting aspirin therapy after operation: Effects on early graft patency. Circulation 84: 520–526

    PubMed  CAS  Google Scholar 

  30. Grondin CM, Campeau L, Lespérance J, Enalbert M, Bourassa MG (1984) Comparison of late changes in internal mammary artery and saphenous vein grafts in two consecutive series of patients 10 years after operation. Circulation 70 (suppl I): 208–212

    Google Scholar 

  31. Hall PA, Levison DA, Wood AL, Yu CC, Kellock DB, Watkins JA, Barnes DM, Gillett CE, Camplejohn R, Dover R, Waseem NH, Lane DP (1990) Proliferating cell nuclear antigen (pcna) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathology 162: 285–294

    Article  CAS  Google Scholar 

  32. Israel DH, Adams PC, Stein B, Chesebro JH, Fuster V (1991) Antithrombotic therapy in the coronary vein graft patient. Clin Cardiol 14: 283–295

    Article  PubMed  CAS  Google Scholar 

  33. Jay MK, William CR (1990) Morphologic findings in saphenous veins used as coronary arterial bypass conduits for longer than 1 year: Necropsy analysis of 53 patients, 123 saphenous veins and 1865 five-millimeter segments of veins. Am Heart J 119: 1164–1184

    Article  Google Scholar 

  34. John EW, Netto D, Demian SE, Haagen DR, Brickner E, Eichhorn EJ, Grayburn PA (1992) Intravascular ultrasound imaging of saphenous vein grafts in vitro: Comparison with histologic and quantitative angiographic findings. Am J Coll Cardiol 19: 759–764

    Google Scholar 

  35. John H, Fuster V, Badimon L, Badimon J, Taubman MB, Chesebro JH (1990) Syndromes of accelerated atherosclerosis: Role of vascular injury and smooth muscle cell proliferation. Am J Coll Cardiol 15: 1667–1687

    Google Scholar 

  36. Kalmar P, Irrgang E (1994) Cardiac surgery in Germany during 1993: A Report by the German society for thoracic and cardiovascular surgery. Thorac cardiovasc Surgeon 42: 194–196

    Article  CAS  Google Scholar 

  37. Karayannacos PE, Hostetler JR, Bond MG, Kakos GS, Williams RA, Kilman JW, Vasko JS (1978) Mediating factors in subendothelial fibromuscular hyperplasia. Ann Surg 187: 183–188

    Article  PubMed  CAS  Google Scholar 

  38. Kohler TR, Kirkman TR, Clowes WA (1989) The effect of rigid external support on vein graft adaption to the arterial circulation. J Vasc Surg 9: 277–285

    Article  PubMed  CAS  Google Scholar 

  39. Lee RT, Loree HM, Fishbein MC (1994) High stress regions in saphenous vein bypass graft atherosclerotic lesions. J Am Coll Cardiol 24: 1639–1644

    Article  PubMed  CAS  Google Scholar 

  40. Lindner V, Lappi DA, Baird A, Majack RA, Reidy A (1991) Role of basic fibroblast growth factor in vascular lesion formation. Circ Res 68: 106–113

    PubMed  CAS  Google Scholar 

  41. LoGerfo FW, Quist WC, Cantelmo NL, Haudenschild CC (1983) Integrity of vein grafts as a function of initial intima and medial preservation. Circulation 68 (suppl II): 117–124

    Google Scholar 

  42. Loop FD, Lytle B, Cosgrove DM (1989) New arteries for old. Circulation 79 (suppl 1): 40–45

    Google Scholar 

  43. Lytle BW, Loop FD, Cosgrove DM, Ratliff NB, Easley K, Taylor PC (1985) Long-term (5–12 years) serial studies on internal mammary artery and saphenous vein coronary bypass grats. J Thoracic Cardiovasc Surg 89: 248–258

    CAS  Google Scholar 

  44. Malone JM, Kischer CW, Moore WS (1981) Changes in venous endothelial fibrinolytic activity and histology with in vitro venous distention and arterial implantation. Am J Surg 142: 178–182

    Article  PubMed  CAS  Google Scholar 

  45. Marvick C (1994) Coronary bypass grafting economics, including rehabilitation. Current Opinion in Cardiol 9: 635–640

    Article  Google Scholar 

  46. Metke M, Lie JT, Fuster V, Josa Miguel (1979) Reduction of intimal thickening in canine coronary bypass vein grafts with dipyridamole and aspirin. Am J Cardiology 43: 1144–1148

    Article  CAS  Google Scholar 

  47. Moritz A, Grabenwöger F, Wolner E (1994) Mesh tube-calibrated varicose veins for coronary artery bypass grafting. Ann Thorac Surg 57: 240–242

    PubMed  CAS  Google Scholar 

  48. Moritz A, Raderer F, Magometschnigg H, Trubel W, Ullrich R, Laufer G, Staudacher M (1992) The use of mesh-tube-constricted dilated or varicose veins as arterial bypass conduit. Thorac Cardiovasc Surg 40: 356–360

    Article  PubMed  CAS  Google Scholar 

  49. Painter TA (1991) Myointimal hyperplasia: Pathogenesis and implications. Animal injury models and mechanical factors. Artif Organs 15: 103–118

    Article  PubMed  CAS  Google Scholar 

  50. Parsonnet V, Attai LA, Shah IH (1963) New stent for support of veins in arterial grafts. Arch Surg 87: 696–792

    PubMed  CAS  Google Scholar 

  51. Ramos JR, Berger K, Mansfield PB, Sauvage LR (1976) Histologic fate and endothelial changes of distended and nondistended vein grafts. Annals of Surg 3: 205–228

    Article  Google Scholar 

  52. Rittgers SE, Karayannacos PE, Guy JF, Nerem RM, Shaw GM, Hostetler JR, Vasko JS (1978) Velocity distribution and intimal proliferation in autologous vein grafts in dogs. Circulation research 6: 792–801

    Google Scholar 

  53. Robicsek F, Thubrikar MJ (1994) The freedom from atherosclerosis of intra-myocardial coronary arteries: reduction of mural stress — a key factor. Eur J Cardio-thorac Surg 8: 228–235

    Article  CAS  Google Scholar 

  54. Roubos N, Rosenfeldt FL, Richards SM, Conyers RAJ, Davis BB (1995) Improved preservation of saphenous vein grafts by the use of glyceryl trinitrateverapamil solution during harvesting. Circulation 92 (suppl II): 31–36

    CAS  Google Scholar 

  55. Sank A, Rostami K, Weaver F, Ertl D, Yellin A, Nimni M, Tuan TL (1992) New evidence and new hope concerning endothelial seeding of vascular grafts. Am J Surg 164: 199–204

    Article  PubMed  CAS  Google Scholar 

  56. Sawchuk AP, Unthank JL, Davis TE, Dalsing MC (1994) A prospective, in vivo study of the relationship between blood flow hemodynamics and atherosclerosis in a hyperlipidemic swine model. J Vasc Surg 19: 58–64

    PubMed  CAS  Google Scholar 

  57. Simons M, Leclerc G, Safian D, Isner JM, Weir L, Baim DS (1993) Relations between activated smooth-muscle cells in coronary-artery lesions and restenosis after atherectomy. New Engl J of Medicine 9: 608–613

    Article  Google Scholar 

  58. Soyombo AA, Angelini GD, Bryan AJ, Newby AC (1993) Surgical preparation induces injury and promotes smooth muscle cell proliferation in a culture of human saphenous vein. Cardiovasc Research 27: 1961–1967

    Article  CAS  Google Scholar 

  59. Soyombo AA, Angelini GD, Newby AC (1995) Neointima formation is promoted by surgical preparation and inhibited by cyclic nucleotides in human saphenous vein organ cultures. Thorac Cardiovasc Surg 109: 2–12

    Article  CAS  Google Scholar 

  60. Spray TL, Roberts WC (1977) Changes in saphenous veins used as aortocoronary bypass grafts. Am Heart J 94: 500–516

    Article  PubMed  CAS  Google Scholar 

  61. Stoney WS, Alford WC, Burrus GR, Glassford DM, Petracek MR, Thomas CS (1984) The fate of arm veins used for aorto-coronary bypass grafts. J Thorac Cardiovasc Surg 88: 522–526

    PubMed  CAS  Google Scholar 

  62. Torbjörn I, Huttunen Kaja, Landou C, Björk VO (1988) Angiographic studies of internal mammary artery grafts II years after coronary artery bypass grafting. J Thorac Cardiovasc Surg 96: 1–12

    Google Scholar 

  63. Unni KK, Kottke BA, Titus JL, Frye RL, Wallace RB, Brown AL (1974) Pathologic changes in aortocoronary saphenous vein grafts. Am J of Cardiology 3: 526–532

    Article  Google Scholar 

  64. Violaris AG, Newby AC, Angelini GD (1993) Effects of external stenting on wall thickening in arterio-venous bypass grafts. Ann Thorac Surg 55: 667–671

    Article  PubMed  CAS  Google Scholar 

  65. Vlodaver Z, Edwards JE (1971) Pathologic changes in aortic-coronary arterial saphenous vein grafts. Circulation 44: 719–728

    PubMed  CAS  Google Scholar 

  66. Walpoth B, Zurbrügg HR, Mettler D, Verones S, Schaffner T, Triller J, Höflin F, Schilt W, Althaus U (1988) Erprobung neuer Gefäßprothesen. Vasa 17: 4

    Google Scholar 

  67. Wijnberg DS, Boeve WJ, Ebels T, Van Gelder IC, Van der Heide JN (1990) Patency of arm vein grafts used in aortocoronary bypass surgery. Eur J Cardiothorac Surg 4: 510–513

    Article  PubMed  CAS  Google Scholar 

  68. Willard JE, Dymphna N, Demian SE, Haagen DR, Brickner ME, Eichhorn EJ, Grayburn PA (1992) Intravascular ultrasound imaging of saphenous vein grafts in vitro: Comparison with histologic and quantitative angiographic findings. JACC 19: 759–764

    PubMed  CAS  Google Scholar 

  69. Wolf W, Ayisi K, Ismail M, Kalmar P, Riechers A, Stubbe HM, Westhof FB, Geister C, Pokar H, Schäfer HJ, Saller U (1994) Intimaläsion der aorto-koronaren Bypassvenen infolge Druckbelastung bei der Entnahme. Z Herz-, Thorax-, Gefäßchir 8: 70–74

    Google Scholar 

  70. Ysuf S, Zucker D, Peduzzi P, Fisher LD, Takaro T, Kennedy JW, Davis K, Killip T, Passamani E, Norris R, Morris C, Mathur V, Varnanauskas E, Chalmers TC (1994) Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the coronay bypass graft surgery trialists collaboration. Lancet 344: 563–570

    Article  Google Scholar 

  71. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53: 502–514

    PubMed  CAS  Google Scholar 

  72. Zurbrügg HR, Hetzer R (in press) The use of biocompound-grafts together with varicose veins: First clinical experience. J Cardiovasc Surg

  73. Zurbrügg HR, Zirngibl H (1996) Optimierung des Venenquerschnitts in der Bypasschirurgie. Erste Anwendungen des ultraflexiblen Biocompound-Grafts bei Patienten. Swiss Surgery Suppl I: 8–12

    Google Scholar 

  74. Zweep HP, Satoh S, van der Lei B, Hinrichs WL, Dijk F, Feijen J, Wildevuur CR (1993) Autologous vein supported with a biodegradable prosthesis for arterial grafting. Ann Thorac Surg 55: 427–433

    Article  PubMed  CAS  Google Scholar 

  75. Zwolack RM, Adams MC, Clowes AW (1987) Kinetics of vein graft hyperplasia: Association with tangential stress. J Vasc Surg 5: 126–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zurbrügg, H.R., Wied, M., Wenzel, K. et al. Die Biocompound-Gefäßprothese in der aorto-koronaren Bypasschirurgie. Z. Herz-, Thorax-, Gefäßchir. 11, 28–36 (1997). https://doi.org/10.1007/BF03043235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043235

Schlüsselwörter

Key words

Navigation