Skip to main content
Log in

Population size and taxonomic diversity in geologic time: a brief look at two density-dependent models

Populationsgröße und taxonomische Diversität in geologischer Zeit: eine Kurzbetrachtung zweier dichteabhängiger Modelle

  • Published:
Senckenbergiana lethaea Aims and scope Submit manuscript

Abstract

Density-dependent models of changes in the population size of a fossil species in geologic time, or the taxonomic diversity of a fossil group in geologic time, can be formulated using (1) the logistic equation model or (2) a piecewise linear/stochastic model ofGrenfell et al. One may test (or at least get an indication) whether or not one of the two types of models holds for a particular estimate of population size (or taxonomic diversity) Xt by plotting the value of the estimate as a function of time plus a scattergram of Xt+1 versus Xt for all pairs of estimates of population size (or taxonomic diversity) {Xt, Xt+1} successive in time.

Kurzfassung

Dichte-abhängige Modelle von Wechseln in den Populationsgrößen einer fossilen Art im Laufe geologischer Zeit oder die taxonomische Diversität einer Fossilgruppe im Laufe geologischer Zeit kann man formulieren durch (1) logistische Gleichungen oder (2) durch ein stückweise lineares/stochastisches Modell vonGrenfell et al. Man mag ausprobieren, ob eines der beiden Modelle geeignet ist, die bestimmte Populationsgröße (oder taxonomischen Diversität) Xt abzuschätzen, indem der Schätzwert als Funktion der Zeit in Verbindung mit einem Streudiagramm von Xt+1 versus Xt für alle Paare von Schätzungen der Populationsgrößen (oder taxonomischen Diversität) {Xt, Xt+1} in einheitlicher Folge aufgetragen wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer, A. W., Kuecher, G. J. &Kvale, E. P. (1995): The role of tidalvelocity assymetries in the deposition of silty tidal rhythmites (Carboniferous, Eastern Interior Coal Basin, U.S.A.). — Journal of Sedimentary Research,A65: 408–416, 13 text-figs; Tulsa/Okla.

    Google Scholar 

  • Boucot, A. J. (1981): Principles of Benthic Marine Biology. — 1–463; New York (Academic Press).

    Google Scholar 

  • Carr, T. R. &Kitchell, J. A. (1980): Dynamics of taxonomic diversity. — Paleobiology,6: 427–443, 8 text-figs, 1 tab.; Lawrence/Kan.

    Google Scholar 

  • Chiba, S. (1998): A mathematical model for long-term patterns of evolution: effects of environmental stability and instability on macroevolutionary patterns and mass extinctions. — Paleobiology,24: 336–348, 4 text-figs; Lawrence/Kan.

    Google Scholar 

  • Fowler, T. &Roach, D. (1991): Non-linear dynamics, chaos and fractals with applications to geological systems. — In: G. V.Middleton [Ed.], Nonlinear Dynamics, Chaos and Fractals with Applications to Geological Systems. — Geol. Assoc. Canada Short Course Notes,9: 59–81, 10 text-figs, 1 tab.; Toronto.

    Google Scholar 

  • Gilinsky, N. L. (1991): The Pace of Taxonomic Evolution. — In: N. L.Gilinsky & P. W.Signor [Eds], Analytical Paleobiology, Short Course in Paleontology no. 4. — Paleontological Society Short Course Notes: 157–174, 6 text-figs; Lawrence/Kan.

  • Graham, J. (1982): Transition from basin-plain to shelf deposits in the Carboniferous Flysch of Southern Morocco. — Sedimentary Geology,33: 173–194, 11 text-figs; Amsterdam.

    Article  Google Scholar 

  • Grenfell, B. T., Wilson, K., Finkenstädt, B. F., Coulson, T. N., Murray, S., Albon, S. D., Pemberton, J. M., Clutton-Brock, T. H. &Crawley, M. J. (1998): Noise and determinism in synchronized sheep dynamics. — Nature,394: 674–677, 3 text-figs, 1 tab.; London.

    Article  Google Scholar 

  • Harper, C. W. (1996): Patterns of diversity, extinction, and origination in the Ordovician-Devonian Stropheodontacea. — Historical Biology,11: 267–288, 8 text-figs, 3 tabs; Amsterdam.

    Article  Google Scholar 

  • Harper, C. W. (1998): Thickening and/or thinning upward patterns in sequences of strata: tests of significance. — Sedimentology,45: 657–696, 5 text-figs, 14 tabs; Oxford.

    Article  Google Scholar 

  • Hastings, A. &Higgins, K. (1994): Persistence of Transients in Spatially Structured Ecological Models. — Science,263: 1133–1136, 3 text-figs; Washington/D.C.

    Article  Google Scholar 

  • Kitchell, J. A. &Carr, T. R. (1985): Nonequilibrium model of diversification: faunal turnover dynamics. — In:J. W. Valentine [Ed.], Phanerozoic Diversity Patterns — Profiles in Macroevolution, 277–308; New Jersey (Princeton University Press).

    Google Scholar 

  • May, R. (1989): The chaotic rhythms of life. — New Scientist,124: 37–41, 4 text-figs; London.

    Google Scholar 

  • Maynard Smith, J. &Slatkin, M. (1992): The stability of predatorprey systems. — Ecology,54: 384–391, 10 text-figs; Tempe.

    Article  Google Scholar 

  • Middleton, G. V. (1990): Non-linear dynamics and chaos: potential applications in the earth Sciences. — Geoscience Canada,17: 3–11, 6 text-figs; Toronto.

    Google Scholar 

  • Prokoph, A. &Barthelmes, F. (1996): Detection of nonstationarities in geological time series. — Computers and Geosciences,22: 1097–1108, 8 text-figs; Oxford.

    Article  Google Scholar 

  • Schülke, I. (1998): Conodont community structure around the ‘Kellwasser mass extinction event’ (Frasnian/Famennian boundary interval). — Senckenbergiana lethaea,77 (1/2): 87–99, 5 text-figs, 1 tab.; Frankfurt am Main.

    Google Scholar 

  • Sepkoski, J. J., Jr. (1978): A kinetic model Phanerozoic taxonomic diversity. I. Analysis of marine orders. — Paleobiology,4: 223–251, 13 text-figs, 1 tab.; Lawrence/Kan.

    Google Scholar 

  • Sepkoski, J. J., Jr. (1979): A kinetic model Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. — Paleobiology,5: 222–251, 11 text-figs; Lawrence/Kan.

    Google Scholar 

  • Sepkoski, J. J., Jr. (1991): Population Biology and Evolution. — In: N. L.Gilinsky & P. W.Signor [Eds], Analytical Paleobiology, Short Course in Paleontology no. 4. — Paleontological Society Short Course Notes: 136–156, 11 text-figs; Lawrence/Kan.

  • Stenseth, N. C. &Chan, J.-S. (1998): Nonlinear sheep in a noisy world. — Nature,394: 620–621; London.

    Article  Google Scholar 

  • Vivaldi, F. (1989): An experiment with mathematics. — New Scientist,124: 46–49, 3 text-figs; London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Harper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, C.W. Population size and taxonomic diversity in geologic time: a brief look at two density-dependent models. Senckenbergiana lethaea 79, 43–49 (1999). https://doi.org/10.1007/BF03043213

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03043213

Key words

Navigation