Scleroecology: Implications for ecotypical dwarfism in oxygen-restricted environments (Middle Devonian, Rheinisches Schiefergebirge)

Scleroökologie: Implikationen für ökologisch bedingten Zwergwuchs in sauerstoff-restriktiver Fazies (Mitteldevon, Rheinisches Schiefergebirge)

Abstract

Body sizes of brachiopods and planktonic tentaculites (dacryoconarids) decrease continuously during the Upper Eifelian. This feature is closely related to theotomari Event and the subsequent black shale period, resulting from lowered oxygen levels worldwide in most parts of the marine ecosystem. It is assumed here that low oxygen availability limited physiological processes and, consequently, the biocalcification rate of some species adapted to elevated levels of aeration. Environmentally suppressed specimens are very small (ecotypical dwarfs), though different species react in different ways to changing environmental conditions. Possibilities of deciphering ecological information stored in hardparts of all organisms that cyclically produce skeletal material, are emphasized. This is also true for fossil material.

Kurzfassung

Im Verlauf des späten Eifeliums nimmt die durchschnittliche Körpergröße von z. B. Brachiopoden und planktonischen Tentaculiten (Dacryoconariden) kontinuierlich ab. Das ist offenbar eng mit demotomari-Event und seinen Folgen, also mit weltweit in bestimmten Teilen des marinen Ökosystems reduzierten Sauerstoffgehalten verbunden. Die Verfügbarkeit von Sauerstoff limitiert ganz offensichtlich physiologische Prozesse und damit auch die Biokalzifizierungsrate solcher Arten, die an höhere Sauerstoffgehalte adaptiert sind. Umweltbedingt unterdrückte Individuen sind kleinwüchsig (ökotypischer Zwergwuchs). Verschiedene Arten reagieren selbstverständlich unterschiedlich auf veränderte Umweltbedingungen. Die Hartteile aller Organismen, die zyklisch Hartsubstanzen produzieren, enthalten eine große Menge an ökologischen Informationen, die größtenteils weder zugänglich gemacht wurden noch entschlüsselt werden konnten. Perspektiven ökologischer Rekonstruktionen mittels Analyse skelettaler Substanzen bestehen auch im fossilen Milieu.

This is a preview of subscription content, log in to check access.

References

  1. Becker, B., Kroner, B. &Trimborn, P. (1991): A stable isotope treering timescale of the Late Glacial/Holocene boundary. — Nature,353: 647–649, 2 text-figs; London.

    Article  Google Scholar 

  2. Becker, B. (1993): An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. — Radiocarbon,35: 201–213, 9 text-figs; New Haven.

    Google Scholar 

  3. Bitvinskas, T. T. (1974): Dendroclimatizheskye issledovanya, Dendroclimatological research: 172 p.; Leningrad (Gidrometeoisdat).

    Google Scholar 

  4. Brett, C. E. &Baird, G. C. (1986): Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. — Palaios,1: 207–227, 13 text-figs, 4 tabs; Tulsa/Okla.

    Article  Google Scholar 

  5. Briffa, K. R., Bartholin, T. S., Eckstein, D., Jones, P. D., Karlėn, W., Schweingruber, F. H. &Zetterberg, P. (1990): A 1,400-year treering record of summer temperatures in Fennoscandia. — Nature,346: 434–439, 4 text-figs, 3 tabs; London.

    Article  Google Scholar 

  6. Briffa, K. R., Jones, P. D., Schweingruber, F. H. &Osborn, T. J. (1998): Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. — Nature,393: 450–455, 2 text-figs, 2 tabs; London.

    Article  Google Scholar 

  7. Briffa, K. R., Jones, P. D., Schweingruber, F. H., Shiyatov, S. G. &Cook, E. R. (1995): Unusual twentieth-century summer warmth in a 1,000-year temperature record from Sibiria. — Nature,376: 156–159, 2 text-figs, 2 tabs; London.

    Article  Google Scholar 

  8. Bromley, R. G. &Ekdale, A. A. (1984):Chondrites: a trace fossil indicator of anoxia in sediments. — Science,224: 872–874, 2 text-figs; Washington/D.C.

    Article  Google Scholar 

  9. Byers, C. W. (1977): Biofacies patterns in euxinic basins: a general model. — SEPM Spec. Publ.,25: 5–17, 8 text-figs; Tulsa/Okla.

    Google Scholar 

  10. Canfield, D. E. &Raiswell, R. (1991): Pyrite formation and fossil preservation. — In:P. A. Allison &D. E. G. Briggs [Eds.], Taphonomy — Releasing the data locked in the fossil record: 337–387, 16 text-figs; New York, London (Plenum).

    Google Scholar 

  11. Craig, G. Y. &Hallam, A. (1963): Size-frequency and growth-ring analyses ofMytilus edulis andCardium edule, and their palaeoecological significance. — Palaeontology,6: 731–750, 10 text-figs; London.

    Google Scholar 

  12. Davenport, C. B. (1938): Growth lines in fossil pectens as indicators of past climates. — J. Paleont.,12: 514–515, Tulsa/Okla.

    Google Scholar 

  13. Dodge, R. E. &Vaišnys, J. R. (1975): Hermatypic coral growth banding as environmental recorder. — Nature,258: 706–708, 1 text-fig.; London.

    Article  Google Scholar 

  14. Dunbar, R. B. &Cole, J. E. [Eds.] (1993), with contr. byHalley, B.,Shen, G.,Wellington, J. &Pätzold, J.: Coral records of oceanatmosphere variability — NOAA Climate and Global Change Program, Spec. Rep.,10: 1–38, 16 text-figs, 2 tabs; Bern.

  15. Farrow, G. E. (1971): Periodicity structures in the bivalve shell: experiments to establish growth controls inCerastoderma edule from the Thames estuary. — Palaeontology,14: 571–588, 9 text-figs, 3 tabs, 1 pl.; London.

    Google Scholar 

  16. Fritts, H. C. (1976): Tree rings and climate: 567 p., 172 text-figs, 25 tabs; London etc. (Academic).

  17. Hallam, A. (1965): Environmental causes of stunting in living and fossil marine benthonic invertebrates. — Palaeontology,8: 132–155, 1 tab.; London.

    Google Scholar 

  18. Heiss, G. A., Dullo, W.-C. &Reijmer, J. J. G. (1993): A 200 year sclerochronological record from the red sea: growth rates, stable isotopes and environmental stress. — Abstr. Prog. Geol. Soc. Amer.,25: 161; Boulder/Colo.

    Google Scholar 

  19. Herreid II, C. F. (1980): Hypoxia in invertebrates. — Comp. Biochem. Physiol.,67A: 311–320, 5 text-figs; Oxford etc.

    Article  Google Scholar 

  20. Hopps, H. C. (1977): The biologic bases for using hair and nail for analyses of trace elements. — Sci. Tot. Environm.,7: 71–89, 8 text-figs, 1 tab.; Amsterdam.

    Article  Google Scholar 

  21. Hudson, J. H., Shinn, E. A., Halley, R. B. &Lidz, B. (1976): Sclerochronology: A tool for interpreting past environments. — Geology,4: 361–364, 3 text-figs; Boulder/Colo.

    Article  Google Scholar 

  22. Jones, D. S. (1981): Annual growth increments in shells ofSpisula solidissima record marine temperature variability. — Science,211: 165–167, 2 text-figs; Washington/D.C.

    Article  Google Scholar 

  23. Jones, D. S. (1983): Sclerochronology: Reading the record of the molluscan shell. — Amer. Scientist,71: 384–391, 6 text-figs; New Haven.

    Google Scholar 

  24. Kempe, S. (1990): Alkalinity: the link between anaerobic basin and shallow water carbonates. — Naturwiss.,77: 426–427, 3 text-figs; Berlin etc.

    Article  Google Scholar 

  25. LaMarche, V. C., Jr. (1974): Paleoclimatic inferences from long tree-ring records. — Science,183: 1043–1048, 7 text-figs; Washington/D. C.

    Article  Google Scholar 

  26. Neville, A. C. (1967): Daily growth layers in animals and plants. — Biol. Rev.,42: 421–441, 1 tab.; Cambridge.

    Article  Google Scholar 

  27. Pannella, G. &MacClintock, C. (1968): Biological and environmental rhythms reflected in molluscan shell growth. — Paleontol. Soc., Mem.,42: 64–81, 3 text-figs, 3 tabs, 9 pls; Bridgewater.

    Google Scholar 

  28. Pätzold, J. (1984): Growth rhythms recorded in stable isotopes and density bands in the reef coralPorites lobata (Cebu, Philippines). — Coral Reefs,3: 87–90, 3 text-figs; Berlin, Heidelberg.

    Article  Google Scholar 

  29. Pielou, E. C. (1975): Ecological diversity: 165 p., 21 text-figs, 12 tabs; New York etc. (Wiley & Sons).

    Google Scholar 

  30. Radtke, R. L., Showers, W., Moksness, E. &Lenz, P. (1996): Environmental information stored in otoliths: insights from stable isotopes. — Mar. Biol.,127: 161–170, 6 text-figs, 4 tabs; Berlin, Heidelberg.

    Article  Google Scholar 

  31. Rhoads, D. C. &Morse, J. W. (1971): Evolutionary and ecologic significance of oxygen-deficient marine basins. — Lethaia,4: 413–428, 5 text-figs; Oslo.

    Article  Google Scholar 

  32. Rhoads, D. C. &Pannella, G. (1970): The use of molluscan shell growth patterns in ecology and paleoecology. — Lethaia,3: 143–161, 9 text-figs, 2 tab.; Oslo.

    Article  Google Scholar 

  33. Richter, R. (1931): Tierwelt und Umwelt im Hunsrückschiefer; zur Entstehung eines schwarzen Schlammsteins. — Senckenbergiana,51: 299–342, 16 text-figs; Frankfurt a.M.

    Google Scholar 

  34. Savrda, C. E. &Bottjer, D. (1986): Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. — Geology,14: 3–6, 5 text-figs, 1 tab.; Boulder/Colo.

    Article  Google Scholar 

  35. Schmidt, H. (1931): Die ursprünglichen Zusammenhänge zwischen Harz und Rheinischem Schiefergebirge. — Die Naturwiss.,19: 911–916, 3 text-figs; Berlin.

    Article  Google Scholar 

  36. Schmidt, H. (1956): Zur Rangordnung der Faziesbegriffe. — Mitt. Geol. Ges. Wien,49: 333–345; Wien.

    Google Scholar 

  37. Schöne, B. R. (1996): Allochrone Variationen beiNowakia (Nowakia) ex gr.otomariBouček &Prantl 1959 (Dacryoconarida, Rheinisches Schiefergebirge). — N. Jb. Geol. Paläont., Mh.,1996 (11): 651–671, 7 text-figs, 2 tabs; Stuttgart.

    Google Scholar 

  38. Schöne, B. R. (1997): Derotomari-Event und seine Auswirkungen auf die Fazies des Rhenoherzynischen Schelfs (Devon, Rheinisches Schiefergebirge). — Göttinger Arb. Geol. Paläont.,70: 1–140, 34 text-figs, 1 tab; Göttingen.

    Google Scholar 

  39. Schöne, B. R. (1998): Anatomy, morphology, physiology and ecological significance of dwarfed trees. — Proc. Int. Conf. Dendrochron. Environ. Trends, Eurodendro 98, 17–21 June, 1998, Kaunas, Lithuania: 209–218; Kaunas.

  40. Schöne, B. R. &Schubert, M. (1996): Gekrümmte Dacryoconariden aus der Odershausen-Formation (Mittel-Devon; “Blauer Bruch”, Bad Wildungen, Ense). — Senckenbergiana lethaea,76 (1/2): 121–131, 2 text-figs, 3 pls.; Frankfurt am Main.

    Google Scholar 

  41. Schöne, B. R. &Schweingruber, F. H. (1999): Verzwergte Laubhölzer; anatomische und morphologische Besonderheiten sowie ökologische Bedeutung. — Schweiz. Z. Forstwes.,150 (4): 132–141; Zürich.

    Article  Google Scholar 

  42. Schuhmacher, M., Domingo, J. L., Llobet, J. M. &Corbella, J. (1991): Lead in children’s hair, as related to exposure in Tarragona Province, Spain. — Sci. Tot. Environm.,104: 167–173, 3 tabs; Amsterdam.

    Article  Google Scholar 

  43. Schweingruber, F. H. (1983): Der Jahrring. Standort, Methodik, Zeit und Klima in der Dendrochronologie: 234 p.; Bern, Stuttgart (Haupt).

    Google Scholar 

  44. Scuderi, L. A. (1993): A 2000-year tree ring record of annual temperatures in the Sierra Nevada Mountains. — Science,259: 1433–1436, 4 text-figs, 2 tabs; Washington/D. C.

    Article  Google Scholar 

  45. Shannon, C. E. &Weaver, W. (1949): The mathematical theory of communication: 117 p.; Urbana (University Illinois).

    Google Scholar 

  46. Struve, W. (1955): Beiträge zu den Devon-Richtschnitten von Wetteldorf und Schönecken, 8:Grünewaldtia aus dem Schönecker Richtschnitt (Brachiopoda, Mittel-Devon der Eifel). — Senckenbergiana lethaea,36 (3/4): 205–234, 9 text-figs, 4 pls; Frankfurt am Main.

    Google Scholar 

  47. Struve, W. (1966): Beiträge zur Kenntnis devonischer Brachiopoden, 15: Einige Atrypinae aus dem Silurium und Devon. — Senckenbergiana lethaea,47 (2): 123–163, 13 text-figs, 1 tab., pls 15–16; Frankfurt am Main.

    Google Scholar 

  48. Swart, P. K., Dodge, R. E. &Hudson, H. J. (1996): A 240-year stable oxygen and carbon isotopic record in a coral from south Florida: implications for the prediction of precipitation in southern Florida. — Palaios,11: 362–375, 18 text-figs; Tulsa/Okla.

    Article  Google Scholar 

  49. Thorrold, S. R., Jones, C. M. &Campana, S. E. (1997): Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnol. Oceanogr,42 (1): 102–111, 6 text-figs, 3 tabs; Waco.

    Article  Google Scholar 

  50. Torres, J., Gluck, D. &Childress, J. (1977): Activity and physiological significance of the pleopods in the respiration ofCallianassa californiensis (Dana) (Crustacea: Thalassinidae). — Biol. Bull.,152: 134–146, 2 text-figs, 3 tabs; Lancaster.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernd R. Schöne.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schöne, B.R. Scleroecology: Implications for ecotypical dwarfism in oxygen-restricted environments (Middle Devonian, Rheinisches Schiefergebirge). Senckenbergiana lethaea 79, 35–41 (1999). https://doi.org/10.1007/BF03043212

Download citation

Key words

  • Palaeoecology
  • dwarfism
  • black shales
  • otomari Event
  • Middle Devonian
  • Germany