Advertisement

Senckenbergiana lethaea

, Volume 79, Issue 1, pp 35–41 | Cite as

Scleroecology: Implications for ecotypical dwarfism in oxygen-restricted environments (Middle Devonian, Rheinisches Schiefergebirge)

  • Bernd R. Schöne
Article

Abstract

Body sizes of brachiopods and planktonic tentaculites (dacryoconarids) decrease continuously during the Upper Eifelian. This feature is closely related to theotomari Event and the subsequent black shale period, resulting from lowered oxygen levels worldwide in most parts of the marine ecosystem. It is assumed here that low oxygen availability limited physiological processes and, consequently, the biocalcification rate of some species adapted to elevated levels of aeration. Environmentally suppressed specimens are very small (ecotypical dwarfs), though different species react in different ways to changing environmental conditions. Possibilities of deciphering ecological information stored in hardparts of all organisms that cyclically produce skeletal material, are emphasized. This is also true for fossil material.

Key words

Palaeoecology dwarfism black shales otomari Event Middle Devonian Germany 

Scleroökologie: Implikationen für ökologisch bedingten Zwergwuchs in sauerstoff-restriktiver Fazies (Mitteldevon, Rheinisches Schiefergebirge)

Kurzfassung

Im Verlauf des späten Eifeliums nimmt die durchschnittliche Körpergröße von z. B. Brachiopoden und planktonischen Tentaculiten (Dacryoconariden) kontinuierlich ab. Das ist offenbar eng mit demotomari-Event und seinen Folgen, also mit weltweit in bestimmten Teilen des marinen Ökosystems reduzierten Sauerstoffgehalten verbunden. Die Verfügbarkeit von Sauerstoff limitiert ganz offensichtlich physiologische Prozesse und damit auch die Biokalzifizierungsrate solcher Arten, die an höhere Sauerstoffgehalte adaptiert sind. Umweltbedingt unterdrückte Individuen sind kleinwüchsig (ökotypischer Zwergwuchs). Verschiedene Arten reagieren selbstverständlich unterschiedlich auf veränderte Umweltbedingungen. Die Hartteile aller Organismen, die zyklisch Hartsubstanzen produzieren, enthalten eine große Menge an ökologischen Informationen, die größtenteils weder zugänglich gemacht wurden noch entschlüsselt werden konnten. Perspektiven ökologischer Rekonstruktionen mittels Analyse skelettaler Substanzen bestehen auch im fossilen Milieu.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, B., Kroner, B. &Trimborn, P. (1991): A stable isotope treering timescale of the Late Glacial/Holocene boundary. — Nature,353: 647–649, 2 text-figs; London.CrossRefGoogle Scholar
  2. Becker, B. (1993): An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. — Radiocarbon,35: 201–213, 9 text-figs; New Haven.Google Scholar
  3. Bitvinskas, T. T. (1974): Dendroclimatizheskye issledovanya, Dendroclimatological research: 172 p.; Leningrad (Gidrometeoisdat).Google Scholar
  4. Brett, C. E. &Baird, G. C. (1986): Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. — Palaios,1: 207–227, 13 text-figs, 4 tabs; Tulsa/Okla.CrossRefGoogle Scholar
  5. Briffa, K. R., Bartholin, T. S., Eckstein, D., Jones, P. D., Karlėn, W., Schweingruber, F. H. &Zetterberg, P. (1990): A 1,400-year treering record of summer temperatures in Fennoscandia. — Nature,346: 434–439, 4 text-figs, 3 tabs; London.CrossRefGoogle Scholar
  6. Briffa, K. R., Jones, P. D., Schweingruber, F. H. &Osborn, T. J. (1998): Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. — Nature,393: 450–455, 2 text-figs, 2 tabs; London.CrossRefGoogle Scholar
  7. Briffa, K. R., Jones, P. D., Schweingruber, F. H., Shiyatov, S. G. &Cook, E. R. (1995): Unusual twentieth-century summer warmth in a 1,000-year temperature record from Sibiria. — Nature,376: 156–159, 2 text-figs, 2 tabs; London.CrossRefGoogle Scholar
  8. Bromley, R. G. &Ekdale, A. A. (1984):Chondrites: a trace fossil indicator of anoxia in sediments. — Science,224: 872–874, 2 text-figs; Washington/D.C.CrossRefGoogle Scholar
  9. Byers, C. W. (1977): Biofacies patterns in euxinic basins: a general model. — SEPM Spec. Publ.,25: 5–17, 8 text-figs; Tulsa/Okla.Google Scholar
  10. Canfield, D. E. &Raiswell, R. (1991): Pyrite formation and fossil preservation. — In:P. A. Allison &D. E. G. Briggs [Eds.], Taphonomy — Releasing the data locked in the fossil record: 337–387, 16 text-figs; New York, London (Plenum).Google Scholar
  11. Craig, G. Y. &Hallam, A. (1963): Size-frequency and growth-ring analyses ofMytilus edulis andCardium edule, and their palaeoecological significance. — Palaeontology,6: 731–750, 10 text-figs; London.Google Scholar
  12. Davenport, C. B. (1938): Growth lines in fossil pectens as indicators of past climates. — J. Paleont.,12: 514–515, Tulsa/Okla.Google Scholar
  13. Dodge, R. E. &Vaišnys, J. R. (1975): Hermatypic coral growth banding as environmental recorder. — Nature,258: 706–708, 1 text-fig.; London.CrossRefGoogle Scholar
  14. Dunbar, R. B. &Cole, J. E. [Eds.] (1993), with contr. byHalley, B.,Shen, G.,Wellington, J. &Pätzold, J.: Coral records of oceanatmosphere variability — NOAA Climate and Global Change Program, Spec. Rep.,10: 1–38, 16 text-figs, 2 tabs; Bern.Google Scholar
  15. Farrow, G. E. (1971): Periodicity structures in the bivalve shell: experiments to establish growth controls inCerastoderma edule from the Thames estuary. — Palaeontology,14: 571–588, 9 text-figs, 3 tabs, 1 pl.; London.Google Scholar
  16. Fritts, H. C. (1976): Tree rings and climate: 567 p., 172 text-figs, 25 tabs; London etc. (Academic).Google Scholar
  17. Hallam, A. (1965): Environmental causes of stunting in living and fossil marine benthonic invertebrates. — Palaeontology,8: 132–155, 1 tab.; London.Google Scholar
  18. Heiss, G. A., Dullo, W.-C. &Reijmer, J. J. G. (1993): A 200 year sclerochronological record from the red sea: growth rates, stable isotopes and environmental stress. — Abstr. Prog. Geol. Soc. Amer.,25: 161; Boulder/Colo.Google Scholar
  19. Herreid II, C. F. (1980): Hypoxia in invertebrates. — Comp. Biochem. Physiol.,67A: 311–320, 5 text-figs; Oxford etc.CrossRefGoogle Scholar
  20. Hopps, H. C. (1977): The biologic bases for using hair and nail for analyses of trace elements. — Sci. Tot. Environm.,7: 71–89, 8 text-figs, 1 tab.; Amsterdam.CrossRefGoogle Scholar
  21. Hudson, J. H., Shinn, E. A., Halley, R. B. &Lidz, B. (1976): Sclerochronology: A tool for interpreting past environments. — Geology,4: 361–364, 3 text-figs; Boulder/Colo.CrossRefGoogle Scholar
  22. Jones, D. S. (1981): Annual growth increments in shells ofSpisula solidissima record marine temperature variability. — Science,211: 165–167, 2 text-figs; Washington/D.C.CrossRefGoogle Scholar
  23. Jones, D. S. (1983): Sclerochronology: Reading the record of the molluscan shell. — Amer. Scientist,71: 384–391, 6 text-figs; New Haven.Google Scholar
  24. Kempe, S. (1990): Alkalinity: the link between anaerobic basin and shallow water carbonates. — Naturwiss.,77: 426–427, 3 text-figs; Berlin etc.CrossRefGoogle Scholar
  25. LaMarche, V. C., Jr. (1974): Paleoclimatic inferences from long tree-ring records. — Science,183: 1043–1048, 7 text-figs; Washington/D. C.CrossRefGoogle Scholar
  26. Neville, A. C. (1967): Daily growth layers in animals and plants. — Biol. Rev.,42: 421–441, 1 tab.; Cambridge.CrossRefGoogle Scholar
  27. Pannella, G. &MacClintock, C. (1968): Biological and environmental rhythms reflected in molluscan shell growth. — Paleontol. Soc., Mem.,42: 64–81, 3 text-figs, 3 tabs, 9 pls; Bridgewater.Google Scholar
  28. Pätzold, J. (1984): Growth rhythms recorded in stable isotopes and density bands in the reef coralPorites lobata (Cebu, Philippines). — Coral Reefs,3: 87–90, 3 text-figs; Berlin, Heidelberg.CrossRefGoogle Scholar
  29. Pielou, E. C. (1975): Ecological diversity: 165 p., 21 text-figs, 12 tabs; New York etc. (Wiley & Sons).Google Scholar
  30. Radtke, R. L., Showers, W., Moksness, E. &Lenz, P. (1996): Environmental information stored in otoliths: insights from stable isotopes. — Mar. Biol.,127: 161–170, 6 text-figs, 4 tabs; Berlin, Heidelberg.CrossRefGoogle Scholar
  31. Rhoads, D. C. &Morse, J. W. (1971): Evolutionary and ecologic significance of oxygen-deficient marine basins. — Lethaia,4: 413–428, 5 text-figs; Oslo.CrossRefGoogle Scholar
  32. Rhoads, D. C. &Pannella, G. (1970): The use of molluscan shell growth patterns in ecology and paleoecology. — Lethaia,3: 143–161, 9 text-figs, 2 tab.; Oslo.CrossRefGoogle Scholar
  33. Richter, R. (1931): Tierwelt und Umwelt im Hunsrückschiefer; zur Entstehung eines schwarzen Schlammsteins. — Senckenbergiana,51: 299–342, 16 text-figs; Frankfurt a.M.Google Scholar
  34. Savrda, C. E. &Bottjer, D. (1986): Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. — Geology,14: 3–6, 5 text-figs, 1 tab.; Boulder/Colo.CrossRefGoogle Scholar
  35. Schmidt, H. (1931): Die ursprünglichen Zusammenhänge zwischen Harz und Rheinischem Schiefergebirge. — Die Naturwiss.,19: 911–916, 3 text-figs; Berlin.CrossRefGoogle Scholar
  36. Schmidt, H. (1956): Zur Rangordnung der Faziesbegriffe. — Mitt. Geol. Ges. Wien,49: 333–345; Wien.Google Scholar
  37. Schöne, B. R. (1996): Allochrone Variationen beiNowakia (Nowakia) ex gr.otomariBouček &Prantl 1959 (Dacryoconarida, Rheinisches Schiefergebirge). — N. Jb. Geol. Paläont., Mh.,1996 (11): 651–671, 7 text-figs, 2 tabs; Stuttgart.Google Scholar
  38. Schöne, B. R. (1997): Derotomari-Event und seine Auswirkungen auf die Fazies des Rhenoherzynischen Schelfs (Devon, Rheinisches Schiefergebirge). — Göttinger Arb. Geol. Paläont.,70: 1–140, 34 text-figs, 1 tab; Göttingen.Google Scholar
  39. Schöne, B. R. (1998): Anatomy, morphology, physiology and ecological significance of dwarfed trees. — Proc. Int. Conf. Dendrochron. Environ. Trends, Eurodendro 98, 17–21 June, 1998, Kaunas, Lithuania: 209–218; Kaunas.Google Scholar
  40. Schöne, B. R. &Schubert, M. (1996): Gekrümmte Dacryoconariden aus der Odershausen-Formation (Mittel-Devon; “Blauer Bruch”, Bad Wildungen, Ense). — Senckenbergiana lethaea,76 (1/2): 121–131, 2 text-figs, 3 pls.; Frankfurt am Main.Google Scholar
  41. Schöne, B. R. &Schweingruber, F. H. (1999): Verzwergte Laubhölzer; anatomische und morphologische Besonderheiten sowie ökologische Bedeutung. — Schweiz. Z. Forstwes.,150 (4): 132–141; Zürich.CrossRefGoogle Scholar
  42. Schuhmacher, M., Domingo, J. L., Llobet, J. M. &Corbella, J. (1991): Lead in children’s hair, as related to exposure in Tarragona Province, Spain. — Sci. Tot. Environm.,104: 167–173, 3 tabs; Amsterdam.CrossRefGoogle Scholar
  43. Schweingruber, F. H. (1983): Der Jahrring. Standort, Methodik, Zeit und Klima in der Dendrochronologie: 234 p.; Bern, Stuttgart (Haupt).Google Scholar
  44. Scuderi, L. A. (1993): A 2000-year tree ring record of annual temperatures in the Sierra Nevada Mountains. — Science,259: 1433–1436, 4 text-figs, 2 tabs; Washington/D. C.CrossRefGoogle Scholar
  45. Shannon, C. E. &Weaver, W. (1949): The mathematical theory of communication: 117 p.; Urbana (University Illinois).Google Scholar
  46. Struve, W. (1955): Beiträge zu den Devon-Richtschnitten von Wetteldorf und Schönecken, 8:Grünewaldtia aus dem Schönecker Richtschnitt (Brachiopoda, Mittel-Devon der Eifel). — Senckenbergiana lethaea,36 (3/4): 205–234, 9 text-figs, 4 pls; Frankfurt am Main.Google Scholar
  47. Struve, W. (1966): Beiträge zur Kenntnis devonischer Brachiopoden, 15: Einige Atrypinae aus dem Silurium und Devon. — Senckenbergiana lethaea,47 (2): 123–163, 13 text-figs, 1 tab., pls 15–16; Frankfurt am Main.Google Scholar
  48. Swart, P. K., Dodge, R. E. &Hudson, H. J. (1996): A 240-year stable oxygen and carbon isotopic record in a coral from south Florida: implications for the prediction of precipitation in southern Florida. — Palaios,11: 362–375, 18 text-figs; Tulsa/Okla.CrossRefGoogle Scholar
  49. Thorrold, S. R., Jones, C. M. &Campana, S. E. (1997): Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnol. Oceanogr,42 (1): 102–111, 6 text-figs, 3 tabs; Waco.CrossRefGoogle Scholar
  50. Torres, J., Gluck, D. &Childress, J. (1977): Activity and physiological significance of the pleopods in the respiration ofCallianassa californiensis (Dana) (Crustacea: Thalassinidae). — Biol. Bull.,152: 134–146, 2 text-figs, 3 tabs; Lancaster.CrossRefGoogle Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 1999

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of ArizonaTucsonUSA

Personalised recommendations