Advertisement

Advances in Applied Clifford Algebras

, Volume 8, Issue 2, pp 433–441 | Cite as

Parton-like particle bound states as solutions of a linearized relativistic equation

  • Robert M. Yamaleev
  • Adán Rodríguez
  • Jaime Keller
Papers
  • 32 Downloads

Abstract

Within Clifford Algebra and a twistor formalism, we analyze a simingly five dimensional and massive Dirac square root like linearized equation in terms of bilinear twistor operators. The equation is transformed to an eigenvalue problem with the help of the procedure known as Jordan’s map. The solutions for this equation consist of a discrete spectrum of massive bound particle states, which we may call elementary internal excitations. The five-dimensional formalism is embedded in otherwise standard spacetime complex Clifford Algebra.

Keywords

Commutation Relation Clifford Algebra Twistor Space Twistor Theory Spinor Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Penrose R. and W. Rindler, Spinors and Space-Time, Cambridge Monographs on Mathematical Physics. Vol. 1: Two spinor calculus and relativistic fields (1984); Vol. 2: Spinor and twistor methods in space-time geometry (1986), and references therein; Penrose R. and Ward R. S., Twistors for Flat and Curved Space-Time, in: A Held “General Relativity and Gravitation, One Hundred Years After the Birth of Albert Einstein”, Plenum, New York (1980); Robinson I., Null Electromagnetic Fields,J. Math. Phys.,2 (1961) 290–291; Hugget S., Development of twistor ideas, in: “Mathematics of the Physical Spacetime”, J. Keller, ed., Universidad Nacional Autónoma de México, Publishers, México, (1981) 57–65; Liu Y. F. and J. Keller, A Symmetry of Massless Fields,J. Math Phys.,37 (9), (1996) 4320–4332; Ward R. S. and R. O Wells, “Twistor Geometry and Field Theory”, Cambridge U.P., Cambridge (1990), and references therein.Google Scholar
  2. [2]
    Nambu Y., G. Jona-Lasinio,Phys. Rev.,122 (1961) 345;Phys. Rev.,124 (1961) 246.CrossRefADSGoogle Scholar
  3. [3]
    Keller J., Twistors as Geometric Objects in Spacetime, “Clifford Algebras and Spinor Structures”, P. Lounesto and R. Ablamowicz (eds.), Kluwer Academic Publishers, (1995) 133–136.Google Scholar
  4. [4]
    Keller J., Twistors and Clifford Algebras, “Clifford Algebras and their Applications in Mathematical Physics”, V. Dietrich, K. Habetha and G. Jank (eds.), Kluwer Academic Publishers, (1998) 161–173; Keller J.,Int. J. Theor. Phys.,23 (9), (1984), 817–837; Keller J.,Int. J. Theor. Phys.,30 (2), (1991), 137–184; Crumeyrolle A., “Orthogonal and Symplectic Clifford Algebras, Spinor Structures”, Kluwer A. P., Dordrecht (1990); Ablamowicz R., A. Oziewicz and J. Rzewski, Clifford Algebra Approach to Twistors,J. Math. Phys.,23 (1982) 231–242; Keller J.,Advances in Applied Clifford Algebras 4 (1) (1984), 1–12.Google Scholar
  5. [5]
    Rivers R. J., Path integral methods in quantum field theory, Cambridge Univ. Press (1987).Google Scholar

Copyright information

© Birkhäuser-Verlag AG 1998

Authors and Affiliations

  • Robert M. Yamaleev
    • 1
  • Adán Rodríguez
    • 2
  • Jaime Keller
    • 3
    • 4
  1. 1.Joint Institut for Nuclear ResearchDubnaRussian Union
  2. 2.Instituto de Física: “Manuel Sandoval Vallarta”Universidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  3. 3.División de Estudios de Posgrado, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  4. 4.Facultad de Estudios Superiores-CuautitlánUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations