Advances in Applied Clifford Algebras

, Volume 8, Issue 2, pp 341–364 | Cite as

The octonionic eigenvalue problem

Papers

Abstract

We discuss the eigenvalue problem for 2×2 and 3×3 octonionic Hermitian matrices. In both cases, we give the general solution for real eigenvalues, and we show there are also solutions with non-real eigenvalues.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Goldstine H. H. & L. P. Horwitz, On a Hilbert Space with Nonassociative Scalars,Proc. Nat. Aca. 48, 1134 (1962).MATHCrossRefADSMathSciNetGoogle Scholar
  2. [2]
    Ogievetskiî O. V., A Characteristic Equation for 3×3 Matrices over the Octonions,Uspekhi Mat. Nauk 36, 197–198 (1981); reviewed in Mathematical Review 82e:15017.Google Scholar
  3. [3]
    Lee H. C., Eigenvalues and Canonical Forms of Matrices with Quaternion Coefficients,Proc. Roy. Irish Acad. A52, 253–260 (1949).Google Scholar
  4. [4]
    Brenner J. L., Matrices of Quaternions,Pacific J. Math. 1, 329–335 (1951).MATHMathSciNetGoogle Scholar
  5. [5]
    Cohn P. M., “skew Field Constructions”, Cambridge University Press, 1977.Google Scholar
  6. [6]
    Dray Tevian, Jason Janesky, and Corinne A. Manogue,Octonionic Hermitian Matrices with Non-Real Eigenvalues (in preparation).Google Scholar
  7. [7]
    Schafer Richard D., An Introduction to Nonassociative Algebras, Academic Press, New York, (1966) & Dover, Mineola NY, (1995).MATHGoogle Scholar
  8. [8]
    Okubo S., “Introduction to Octonion and Other Non-Associative Algebras in Physics”, Cambridge University Press, Cambridge, (1995).MATHGoogle Scholar
  9. [9]
    Gürsey Feza and Chia-Hsiung Tze, “On the Role of Division, Jordan and Related Algebras in Particle Physics”, World Scientific, Singapore, (1996).Google Scholar
  10. [10]
    Reese Harvey F., “Spinors and Calibrations”, Academic Press, Boston, (1990).MATHGoogle Scholar
  11. [11]
    Gureirch G. B., “Foundations of the Theory of Algebraic Invariants”, P. Noordhoff, Groningen, (1964).Google Scholar
  12. [12]
    Jacobson Nathan, Structure and Representations of Jordan Algebras,Amer. Math. Soc. Colloq. Publ.,39, American Mathematical Society, Providence, (1968).MATHGoogle Scholar
  13. [13]
    Corinne A. Manogue & Anthony Sudbery, General Solutions of Covariant Superstring Equations of Motion,Phys. Rev. D40 4073–4077 (1989); Tevian Dray and Corinne A. Manogue, “Associators and the 3-Ψ’s Rule”, (in preparation).ADSMathSciNetGoogle Scholar
  14. [14]
    Jordan P., J. von Neumann, and E. Wigner,Ann. Math. 36, 29 (1934); H. Freudenthal,Adv. Math. 1, 145 (1964).CrossRefGoogle Scholar
  15. [15]
    Dray Tevian and Corinne A. Manogue, Finding Octonionic Eigenvectors Using Mathematica,Comput. Phys. Comm., (invited paper; submitted).Google Scholar

Copyright information

© Birkhäuser-Verlag AG 1998

Authors and Affiliations

  1. 1.Department of MathematicsOregon State UniversityCorvallisUSA
  2. 2.Department of PhysicsOregon State UniversityCorvallisUSA

Personalised recommendations