Advances in Applied Clifford Algebras

, Volume 8, Issue 2, pp 323–340 | Cite as

Holomorphic Cliffordian functions

  • Guy Laville
  • Ivan Ramadanoff


The aim of this paper is to put the foundations of a new theory of functions, called holomorphic Cliffordian, which should play an essential role in the generalization of holomorphic functions to higher dimensions. Let ℝ0,2m+1 be the Clifford algebra of ℝ2m+1 with a quadratic form of negative signature,\(D = \sum\limits_{j = 0}^{2m + 1} {e_j {\partial \over {\partial x_j }}} \) be the usual operator for monogenic functions and Δ the ordinary Laplacian. The holomorphic Cliffordian functions are functionsf: ℝ2m+2 → ℝ0,2m+1, which are solutions ofDδ m f = 0.

Here, we will study polynomial and singular solutions of this equation, we will obtain integral representation formulas and deduce the analogous of the Taylor and Laurent expansions for holomorphic Cliffordian functions.

In a following paper, we will put the foundations of the Cliffordian elliptic function theory.


Holomorphic Function Clifford Algebra Laurent Series Polynomial Solution Monogenic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brackx F., R. Delanghe, F. Sommen Clifford Analysis Pitman, (1982).Google Scholar
  2. [2]
    Deavors C. A., The quaternion calculus,Am. Math. Monthly., (1973) 995–1008.Google Scholar
  3. [3]
    Delanghe R., F. Sommen, V. Soucěk, Clifford Algebra and Spinor-valued functions, Kluwer Academic Publishers.Google Scholar
  4. [4]
    Fueter R., Die Funktionnentheorie der Differentialgleichungen Δu=0 und ΔΔu=0 mit vier reellen Variablen.,Comment Math. Helv, 7, (1935) 307–330.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Fueter R., Uber die analytische Darstellung der regularen Funktionen einer Quaternionenvariabelen,Comment Math. Helv., 8, (1936) 371–378.CrossRefMathSciNetGoogle Scholar
  6. [6]
    Laville G., Une famille de solutions de l’équation de Dirac avec champ électromagnétique quelconque,C. R. Acad. Sci. Paris, t. 296, (1983) 1029–1032.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Laville G., Sur l’équation de Dirac avec champ électromagnétique quelconqueLectures Notes in Math., 1165, Springer-Verlag (1985), 130–149.Google Scholar
  8. [8]
    Laville G., I. Ramadanoff, Fonctions holomorphes Cliffordiennes,C. R. Acad, Sc. Paris, 326, série I, (1998) 307–310.zbMATHADSMathSciNetGoogle Scholar
  9. [9]
    Malonek H., Powers series representation for monogenic functions in ℝn+1 based on a permutational product, Complex variables,15, (1990) 181–191.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Palamodov V. P., On “holomorphic” functions of several quaternionic variables, C. A. Aytama (ed) Linear topological spaces and complex analysis II, Ankara (1995), 67–77.Google Scholar
  11. [11]
    Pernas L., Holomorphic quaternionienne, preprint, (1997).Google Scholar

Copyright information

© Birkhäuser-Verlag AG 1998

Authors and Affiliations

  1. 1.UPRES-A 6081 Département de MathématiquesUniversité de CaenCaen CedexFrance

Personalised recommendations