Skip to main content
Log in

Regulation der T-Zell-Aktivierung über CD28 und CTLA-4

Regulation of T-Cell activation by CD28 and CTLA-4

  • Übersicht
  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

□ T-Zell-Antwort

T-Lymphozyten besitzen eine Schlüsselstellung in der Koordination der Immunantwort. T-Helfer-Zellen tragen dazu über die Freisetzung von Zytokinen bei, zytotoxische T-Zellen eliminieren als fremd erkannte Zellen. Über ihren T-Zell-Rezeptor erkennt jede T-Zelle ein spezifisches Peptidantigen, das ihr im Falle der T-Helfer-Zellen von antigenpräsentierenden Zellen, im Fall der zytotoxischen T-Zellen von fast allen anderen Körperzellen im Kontext von Haupthistokompatibilitätsantigenen (MHC) präsentiert wird. Durch den Antigenkontakt wird über den T-Zell-Rezeptor ein Aktivierungssignal in die Zelle hinein vermittelt, das zur Proliferation, zur Produktion von Zytokinen oder zur effektiven Zytotoxizität führt.

□ Kostimulation

Zur vollen Aktivierung ist jedoch ein zweites Signal notwendig, das der kostimulatorische Rezeptor CD28 nach Bindung seiner spezifischen Liganden B7-1 (CD80) und B7-2 (CD86) bietet. Dieselben Liganden bindet auch der Rezeptor CTLA-4 (CD152), der jedoch erst nach zwei bis drei Tagen Aktivierung an der Oberfläche von T-Zellen erscheint und durch seine Interaktion mit den B7-Molekülen in der Lage ist, die Aktivierung von T-Lymphozyten wieder herabzuregulieren.

□ Immunsuppression durch CTLA-4Ig

Ein gentechnisch hergestelltes, lösliches Fusionsprotein (CTLA-4Ig), das aus der extrazellulären Domäne von CTLA-4 und dem Fc-Teil von Immunglobulinen besteht, kann die Interaktion von CD28 und CTLA-4 mit ihren Liganden unterbinden und so im Fall unerwünschter Aktivierung des Immunsystems wie Transplantatabstoßung oder Autoimmunerkrankungen die Aktivierung von T-Lymphozyten verhindern oder reduzieren.

□ Schlußfolgerung

Die Bedeutung des regulatorischen Systems CD28/CTLA-4/B7 und der Beeinflussung durch CTLA-4Ig konnte in den letzten Jahren in einer Vielzahl von Tiermodellen gezeigt werden und verspricht einen neuartigen Ansatz zur therapeutischen Immunmodulation auch beim Menschen.

Abstract

□ T cell response

T lymphocytes play a key role in the coordination of the immune response. T helper cells contribute primarily by means of cytokine release, whereas cytotoxic T cells eliminate cells bearing antigens recognized as foreign. Through its T cell receptor each T cell can recognize a specific peptide antigen, which is presented in the context of the major histocompatibility complex (MHC) to T helper cells by specialized antigen-presenting cells or to cytotoxic T cells by nearly all body cells. Upon contact with its specific antigen, the T cell receptor transduces an activation signal into the T cell, leading to proliferation, cytokine production, or efficient cytotoxicity.

□ Costimulation

However, a second costimulatory signal is necessary to achieve complete activation. This can be provided by the accessory T cell molecule CD28 upon binding to its respective ligands B7-1 (CD80) or B7-2 (CD86). The same ligands bind to CTLA-4 (CD152), a receptor expressed at the surface of T cells previously activated for 2 to 3 days and capable of downregulating activation.

□ Immunosuppression by CTLA-4Ig

A genetically engineered soluble fusion protein containing the extracellular domain of CTLA-4 and the Fc portion of an immunoglobulin heavy chain (CTLA-4Ig) prevents the interaction of CD28 and CTLA-4 with their B7 ligands, the subsequent activation of T cells and theraby eliminates or reduces unfavorable immune system activation in transplant rejection or autoimmunity.

□ Conclusion

The importance of the regulatory system comprising CD28, CTLA-4 and the B7 molecules and its modulation by CTLA-4Ig has been demonstrated in a substantial number of animal models in recent years and holds promise as a novel approach for therapeutic immunomodulation in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Arima T, Rehman A, Hickey WF, et al. Inhibition by CTLA-4Ig of experimental allergic encephalomyelitis. J Immunol 1996;156:4916–24.

    PubMed  CAS  Google Scholar 

  2. Azuma H, Chandraker A, Nadeau K, et al. Blockade of T-cell costimulation prevents development of experimental chronic renal allograft rejection. Proc Natl Acad Sci USA 1996;93:12072–5.

    Article  Google Scholar 

  3. Baliga P, Chavin KD, Qin L, et al. CTLA-4Ig prolongs allograft survival while suppressing cell-mediated immunity. Transplantation 1994;58:1082–90.

    Article  PubMed  CAS  Google Scholar 

  4. Blazar BR, Taylor PA, Linsley PS, et al. In vivo blockade of CD28/CTLA-4: B7/BB1 interaction with CTLA-4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood 1994;83:3815–25.

    PubMed  CAS  Google Scholar 

  5. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, et al. Coblockade of the LFA1:ICAM and CD28/CTLA-4:B7 pathways is a highly effective means of preventing acute lethal graft-versus-host disease induced by fully major histocompatibility complex-disparate donor grafts. Blood 1995;85:2607–18.

    PubMed  CAS  Google Scholar 

  6. Chahine AA, Yu M, McKernan M, et al. Local CTAL-4Ig synergizes with one-dose anti-LFA-1 to achieve longterm accepantece of pancreatic islet allografts. Transplant Proc 1994;26:3296.

    PubMed  CAS  Google Scholar 

  7. Chen L, Ashe S, Brady WA, et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 1992;71:1093–102.

    Article  PubMed  CAS  Google Scholar 

  8. Chu EB, Hobbs MV, Wilson CB, et al. Intervention of CD4+cell subset shifts and autoimmunity in the BXSB mouse by murine CTLA-4Ig. J Immunol 1996;156:1262–8.

    PubMed  CAS  Google Scholar 

  9. Cross AH, Girard TJ, Giacoletto KS, et al. Long-term inhibition of murine experimental autoimmune encephalomyelitis using CTLA-4-Fc supports a key role for CD28 costimulation. J Clin Invest 1995;95:2783–9.

    Article  PubMed  CAS  Google Scholar 

  10. Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA-4Ig. Science 1994;265:1225–7.

    Article  PubMed  CAS  Google Scholar 

  11. Jenkins MK. The ups and downs of T cell costimulation. Immunity 1994;1:443–6.

    Article  PubMed  CAS  Google Scholar 

  12. June CH, Bluestone JA, Nadler LM, et al. The B7 and CD28 receptor families. Immunol today 1994;15:321–31.

    Article  PubMed  CAS  Google Scholar 

  13. Khoury SJ, Akalin E, Chandraker A, et al. CD28-B7 costimulatory blockade by CTLA-4Ig prevents actively induced experimental autoimmune encephalomyelitis and inhibits Th1 but spares Th2 cytokines in the central nervous system. J Immunol 1995;155:4521–4.

    PubMed  CAS  Google Scholar 

  14. Kuchroo VK, Das MP, Brown JA, et al. B7-1 and B7-2 costimulatory molecules activatediffernetially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 1995;80:707–18.

    Article  PubMed  CAS  Google Scholar 

  15. Lenschow DJ, Ho SC, Sattar H, et al. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J Exp Med 1995;181:1145–55.

    Article  PubMed  CAS  Google Scholar 

  16. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233–58.

    Article  PubMed  CAS  Google Scholar 

  17. Lenschow DJ, Zeng Y, Thistlethwaite JR, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA-4Ig. Science 1992;257:789–92.

    Article  PubMed  CAS  Google Scholar 

  18. Lenschow DJ, Zeng Y, Hathcock KS, et al. Inhibition of transplant rejecion following treatment with anti-B7-2 and anti-B7-1 antibodies. Transplantation 1995;60:1171–8.

    Article  PubMed  CAS  Google Scholar 

  19. Lin H, Bolling SF, Linsley PS, et al. Long-term acceptance of major histocompatibility complex mismatched cardiac alografts induced by CTLA-4Ig plus donor-specific transfusion. J Exp Med 1993;178:1801–6.

    Article  PubMed  CAS  Google Scholar 

  20. Matsumura Y, Zuo XJ, Prehn J, et al. Soluble CTLA-4Ig modifies parameters of acute inflammation in rat lung allograft rejection without altering lymphocytic infiltration or transcription of key cytokines. Transplantation 1995;59:551–8.

    PubMed  CAS  Google Scholar 

  21. Miller SD, Vanderlugt CL, Lenschow DJ, et al. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 1995;3:739–45.

    Article  PubMed  CAS  Google Scholar 

  22. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: A costimulatory pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989;7:445–80.

    PubMed  CAS  Google Scholar 

  23. Nishikawa K, Linsley PS, Collins AB, et al. Effect of CTLA-4 chimeric protein on rat autoimmuine anti-glomerular basement membrane glomerulonephritis. Eur J Immunol 1994;24:1249–54.

    Article  PubMed  CAS  Google Scholar 

  24. Pearson TC, Alexander DZ, Winn KJ, et al. Transplantation tolerance induced by CTLA-4-Ig. Transplantation 1994;57:1701–6.

    PubMed  CAS  Google Scholar 

  25. Perico N, Imberti O, Bontempelli M, et al. Toward novel anti-rejection strategies: in vivo immunosuppressive properties of CTLA-4Ig. Kidney Int 1995;47:241–6.

    Article  PubMed  CAS  Google Scholar 

  26. Pescovitz MD, Yang R, Liu Q, et al. CD28-pathway blockade with CTLA-4Ig leads to prolongation of small bowel transplant survival in rats. Transplant Proc 1994;26:1618–9.

    PubMed  CAS  Google Scholar 

  27. Racke MK, Scott DE, Quigley L, et al. Distinct roles for B7-1 (CD-80) and B7-2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J Clin Invest 1995;96:2195–203.

    Article  PubMed  CAS  Google Scholar 

  28. Rehman A, Tu Y, Arima T, et al. Long-term survival of rat to mouse cardiac xenografts with prolonged blockade of CD28-B7 interaction combined with peritransplant T-cell depletion. Surgery 1996;120:205–12.

    Article  PubMed  CAS  Google Scholar 

  29. Russell ME, Hancock WW, Akalin E, et al. Chronic cardiac rejection in the LEW to F344 rat model. Blockade of CD28-B7 costimulation by CTLA-4Ig modulates T cell and macrophage activation and attenuates arteriosclerosis. J Clin Invest 1996;97:833–8.

    Article  PubMed  CAS  Google Scholar 

  30. Sayegh MH, Akalin E, Hancock WW, et al. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2. J Exp Med 1995;181:1869–74.

    Article  PubMed  CAS  Google Scholar 

  31. Shahinian A, Pfeffer K, Lee KP, et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 1993;261:609–12.

    Article  PubMed  CAS  Google Scholar 

  32. Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995;3:541–7.

    Article  PubMed  CAS  Google Scholar 

  33. Turka LA, Linsley PS, Lin H, et al. T cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 1992;89:11102–5.

    Article  PubMed  CAS  Google Scholar 

  34. Via CS, Rus V, Nguyen P, et al. Differential effect of CT-LA-4Ig on murine graft-versus-host disease (GVHD) development: CTAL-4Ig prevents both acute and chronic GVHD development but reverses only chronic GVHD. J Immunol 1996;157:4258–67.

    PubMed  CAS  Google Scholar 

  35. Wallace PM, Johnson JS, MacMaster JF, et al. CTLA-4Ig treatment ameliorates the lethality of murine graft-versushost disease across the major histocompatibility complex barriers. Transplantation 1994;58:602–10.

    Article  PubMed  CAS  Google Scholar 

  36. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995;270:985–8.

    Article  PubMed  CAS  Google Scholar 

  37. Woodward JE, Qin L, Chavin KD, et al. Blockade of multiple costimulatory receptors inducesd hyporesponsiveness: inhibition of CD2 plus CD28 pathways. Transplantation 1996;62:1011–8.

    Article  PubMed  CAS  Google Scholar 

  38. Wu Y, Guo Y, Huang A, et al. CTLA-4-B7 interaction Is sufficient to costimulate T cell clonal expansion. J Exp Med 1997;185:1327–36.

    Article  PubMed  CAS  Google Scholar 

  39. Yamada A, Murakami M, Ijima K, et al. Long-term acceptance of major histocompatibility complex-mis-matched cardiac allograft induced by a low dose of CTLA-4IgM plus FK506. Microbiol Immunol 1996;40:513–8.

    PubMed  CAS  Google Scholar 

  40. Yin DP, Sankari HN, Williams J, et al. Induction of tolernace to small bowel allografts in high-responder rats by combining anti-CD4 with CTLA-4Ig. Transplantation 1996;62:1537–9.

    Article  PubMed  CAS  Google Scholar 

  41. Yin D, Fathman CG. Induction of tolerance to heart allografts in high responder rats by combining anti-CD4 with CTLA-4Ig. J Immunol 1995;155:1655–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Manger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, T., Kalden, J.R. & Manger, B. Regulation der T-Zell-Aktivierung über CD28 und CTLA-4. Med Klin 93, 592–597 (1998). https://doi.org/10.1007/BF03042674

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03042674

Schlüsselwörter

Key Words

Navigation