Skip to main content
Log in

Das Renin-Angiotensin-System bei kardiovaskulären Erkrankungen

Renin-angiotensin system and cardiovascular diseases

  • Übersicht
  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Zusammenfassung

□ Hintergrund

Die wesentlichen kardiovaskulären Erkrankungen wie die koronare Herzerkrankung, Kardiomyopathien, Klappenvitien und die arterielle Hypertonie, die alle zu einer Herzinsuffizienz führen können, sind mit einer Aktivierung des Renin-Angiotensin-Systems verbunden. Die Hemmung dieses Systems mittels Angiotensin-Konversions-Enzym-(ACE-) Hemmern oder Angiotensin-Rezeptor-Antagonisten ist in den letzten 15 Jahren zur wesentlichen Therapiesäule dieser Erkrankungen geworden.

□ Wirkungsmechanismus

Die lebensverlängernde, leistungsverbessernde und einer Progression der Herzinsuffizienz entegegenwirkende Wirkung von Eingriffen in das Renin-Angiotensin-System beruht auf mehreren Prinzipien:

  1. 1.

    Antagonisierung der als Kompensationsmechanismus bekannten Aktivierung des Renin-Angiotensin-Aldosteron-Systems mit Erhöhung des zirkulierenden Angiotensins II, Noradrenalins und Vasopressins.

  2. 2.

    Einflußnahme auf lokale Renin-Angiotensin-Systeme am Herzen und an den Gefäßen, die sowohl für die Progression der Herzinsuffizienz als auch der ihr zugrundeliegenden Erkrankungen verantwortlich sind. Die Regulationsmechanismen auf Gen- und Rezeptorebene sowie die Bedeutung weiterer Angiotensinrezeptoren bedürfen noch weiterer Klärung.

  3. 3.

    Der Verbindung zum Bradykininstoffwechsel kommt eine wichtige Bedeutung zu. Ein Teil der ACE-Hemmer-Wirkungen, wie zum Beispiel die Beeinflussung der Hypertrophie und die Vasodilatation, beruhen auf Bradykinineffekten. Hier werden zukünftige Untersuchungen mit selektiven Bradykinin-Rezeptor-Antagonisten klären, welcher Teil der ACE-Hemmer-Wirkungen auf einer Beeinflussung des Bradykininstoffwechsels beruht.

□ Schlußfolgerung

Untersuchungen mit spezifischen Rezeptorantagonisten werden weitere Klärung des komplexen Systems liefern, von dessen vollständigem Verständnis wir noch entfernt sind.

Abstract

□ Background

The renin-angiotensin system is mainly involved in several cardiovascular diseases and in the pathophysiology of heart failure. It exists as a circulating and a local system which can be differently regulated. Interventions in this system by angiotensin-converting enzyme (ACE) antagonists or angiotensin-receptor antagonists slow the progression of heart failure and result in prolongation of life expectancy and improvement of hemodynamics.

□ Mechanisms of Action

The main underlying mechanisms are:

  1. 1.

    Heart failure results in activation of the renin-angiotensin system as a compensatory mechanism with elevation of circulating angiotensin II, norepinephrine and vasopressin. Antagonists of this compensatory mechanisms acutely result in improvement of the hemodynamic situation.

  2. 2.

    Elevated circulating and local renin-angiotensin systems cause chronic structural myocardial and vascular effects. Angiotensin-converting enzyme antagonists and angiotensin-receptor blockers modulate and partly antagonize these structural changes such as myocardial hypertrophy, myocardial fibrosis and vascular proliferative responses. Gene and receptor regulation of the system are currently not fully understood and are subject of intensive research.

  3. 3.

    The renin-angiotensin system is closely related to the bradykinin system and thus indirectly to nitric oxide and endothelial function. Bradykinin has multiple other effects on the hemostatic system as a well as on the myocardium and vascular system.

□ Conclusion

These complex interactions require further evaluation. Research with specific bradykinin antagonists will give new insights into this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993;342:821–8.

    Google Scholar 

  2. Agerholm-Larsen B, Nordestgaard BG, Steffensen R, Sorensen TIA, Jensen G, Tybjaerg-Hansen A. ACE gene polymorphism: ischemic heart disease and longevity in 10150 individuals. Circulation 1997;95:2358–67.

    PubMed  CAS  Google Scholar 

  3. Allen AM, Yamada H, Mendelsohn FA. In vitro autoradiographic localization of binding to angiotensin receptors in the rat heart. Int J Cardiol 1990;28:25–33.

    Article  PubMed  CAS  Google Scholar 

  4. Ambrosioni E, Borghi C, Magnan B, for the Survival of Myocardial Infarction Long-Term Evaluation (SMILE) Study Investigators. The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. N Engl J Med 1995;332:80–5.

    Article  PubMed  CAS  Google Scholar 

  5. Anand-Srivastava MB. Angiotensin II receptors negatively coupled to adenylate cyclase in rat myocardial sarcolemma: involvement of inhibitory guanine nucleotide regulatory protein. Biochem Pharmacol 1989;38:489–96.

    Article  PubMed  CAS  Google Scholar 

  6. Baker KM, Singer HA. Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: coupling to inositol and phosphate production. Circ Res 1988;62:896–904.

    PubMed  CAS  Google Scholar 

  7. Baker KM, Chernin MI, Wixson SK, Aceto JF. Reninangiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 1990;2593:H324–32.

    Google Scholar 

  8. Baker KM, Booz GW, Dostal DE. Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Ann Rev Physiol 1992;54:227–41.

    Article  CAS  Google Scholar 

  9. Bauer P, Regitz-Zagrosek V, Lokies J, Rolfs A, Fleck E. Herabregulation myokardialer AT1 im Endstadium der Herzinsuffizienz geschieht auf mRNA-Ebene. Z Kardiol 1995;84:Suppl:3–9.

    Google Scholar 

  10. Bonnardeux A, Davies E, Jeunamaitre X, et al. Angiotensin II type receptor gene polymorphisms in human essential hypertension. Hypertension 1994;24:63–9.

    Google Scholar 

  11. Booz GW, Baker KM. Protein kinase C in angiotensin II signalling in neonatal rat cardiac fibroblasts. Ann NY Acad Sci 1995;752:158–67.

    Article  PubMed  CAS  Google Scholar 

  12. Booz GW, Dostal DE, Singer HA, Baker KM. Involvement of protein kinase C and Ca2+ in angiotensin II-induced mitogenesis of cardiac fibroblasts. Am J Physiol 1994;267:C1308–18.

    PubMed  CAS  Google Scholar 

  13. Brasch H, Sieroilawski L, Dominiak P. Angiotensin II increases norepinephrine release from atria by acting on angiotensin subtype 1 receptors. Hypertension 1993;22:699–704.

    PubMed  CAS  Google Scholar 

  14. Braunwald E. Pathophysiology of heart failure. In: Braunwald E, ed. Heart disease. Philadelphia: Saunders 1992: 393–419.

    Google Scholar 

  15. Burgess ML, Carver WE, Terracio L, Wilson SP, Wilson MA, Borg TK. Integrin-mediated collagen gel contraction by cardiac fibroblasts: effects of angiotensin II. Circ Res 1994;74:291–6.

    PubMed  CAS  Google Scholar 

  16. Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin converting enzyme is a potent risk factor for myocardial infarction. Nature 1992;359:641–4.

    Article  PubMed  CAS  Google Scholar 

  17. Campbell DJ. Endogenous angiotensin II levels and the mechanism of action of angiotensin-converting enzyme inhibitors and angiotensin receptor type 1 antagonists. Clin Exp Pharmacol Physiol 1996;3:Suppl:S125–31.

    Google Scholar 

  18. Chein KR, Knowlton KU, Zhu H, Chein S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiological response. FASEB J 1991;5:3037–46.

    Google Scholar 

  19. Chinese Cardiac Study Collaborative Group. Oral captopril versus plazebo among 13634 patients with suspected acute myocardial infarction: interim report from the Chinese Cardiac Study (CCS-I). Lancet 1995;345:686–7.

    Google Scholar 

  20. Chiu AT, Mc Call DE, Nguyen TT et al. Discrimination of angiotensin II receptor subtypes of dithiotreitol. Eur J Pharmacol 1989;170:117–8.

    Article  PubMed  CAS  Google Scholar 

  21. Cohn JN, Archibald DG, Ziesche S, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. N Engl J Med 1986;314:1547–52.

    PubMed  CAS  Google Scholar 

  22. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991;325:303–10.

    PubMed  CAS  Google Scholar 

  23. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med 1987;316:1429–35.

    Google Scholar 

  24. Dawson S, Henney A. The status of PAI-1 as a risk factor for arterial and thrombotic disease. Atherosclerosis 1992;95:105–17.

    Article  PubMed  CAS  Google Scholar 

  25. De Mello WC, Crespo MJ. Cardiac refractoriness in rats is reduced by angiotensin II. J Cardiovas Pharmacol 1995;25:51–6.

    Article  Google Scholar 

  26. Do Y-S, Shinagawa T, Tam H, Inagami T, Hseuh W Characterization of pure human renal renin: evidence for a subunit structure. J Biol Chem 1987;262:1037–43.

    PubMed  CAS  Google Scholar 

  27. Drexler H, Hayoz D, Münzel T, et al. Endothelial function in chronic congestive heart failure. Am J Cardiol 1992;69:1569–601.

    Article  Google Scholar 

  28. Dzau VJ, Ellison KE, Brody T, Ingelfinger JR, Pratt R. A comparative study of the distribution of renin and angiotensinogen messenger ribonucleic acids in rat and mouse tissues. Endocrinology 1987;120:2334–8.

    Article  PubMed  CAS  Google Scholar 

  29. Elton TS, Stephan CC, Taylor GR, et al. Isolation of two distinct type I angiotensin II receptor genes. Biochem Biophys Res Comm 1992;184:1067–73.

    Article  PubMed  CAS  Google Scholar 

  30. Farber HW, Center DM, Rounds S, Danilov SM. Components of the angiotensin system cause release of a neutrophil chemoatractant from cultured bovine and human endothelial cells. Eur Heart J 1990;11:100–7.

    PubMed  CAS  Google Scholar 

  31. Farhy RD, Ho KL, Carretero OA. Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem Biophys Res Commun 1992;182:283–8.

    Article  PubMed  CAS  Google Scholar 

  32. Freeman EJ, Tallant EA. Vascular smooth muscle cells contain AT1 angiotensin receptors coupled to phospholipase D activation. J Biochem 1994;304:543–8.

    CAS  Google Scholar 

  33. Garg UC, Hassid A. Nitrid oxide-generating vasodilators inhibit mitogenesis and proliferation of BALB/C 3T3 fibroblasts by a cGMP-independent mechanism. Biochem Biophys Res Commun 1990;171:474–9.

    Article  PubMed  CAS  Google Scholar 

  34. Gilbert EM, Sandoval A, Carrabee P, Reselund DG, O’Connell JB, Bristow MR. Lisinopril lowers cardiac adrenergic drive and increases *-receptor density in the failing human heart. Circulation 1993;88:472–80.

    PubMed  CAS  Google Scholar 

  35. Goldberg AI, Dunlay MC, Sweet CS. Safety and tolerability of losartan compared with atenolol, felodipine and angiotensin converting enzyme inhibitors. J Hypertension 1995;13:S77–80.

    Article  Google Scholar 

  36. Gottlieb SS, Dickstein K, Fleck E, et al. Hemodynamic and neurohumeral effects of the angiotensin II antagonist losartan in patients with congestive heart failure. Circulation 1993;88:1602–10.

    PubMed  CAS  Google Scholar 

  37. Griendling KK, Tsuda T, Berk BC, Alexander RW. Angiotensin II stimulation of vascular smooth muscle. J Cardiovasc Pharmacol 1989;14:Suppl 6:S27–33.

    Google Scholar 

  38. Gruppo Italiano per lo Studio della opravivenza nell Infarto miocardico. GISSI-3. Effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 1994;343:1115–22.

    Google Scholar 

  39. Hahn AWA, Resink TJ, Bernhardt J, Ferracin F, Bühler FR. Stimulation of autocrine platelet-derived growth factor AA-homodimer and transforming growth factor *in vascular smooth muscle cells. Biochem Biophys Res Comm 1991;178:1451–8.

    Article  PubMed  CAS  Google Scholar 

  40. Hamdan AD, Quist WC, Gagne JB, Feener EP. Angiotensin-converting enzyme inhibition suppresses plasminogen avtivator inhibitor-1 expression in the neointima of balloon-injured rat aorta. Circulation 1996;93:1073–8.

    PubMed  CAS  Google Scholar 

  41. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 1991;69:475–82.

    PubMed  CAS  Google Scholar 

  42. Holubarsch C, Hasenfuss G, Schmidt-Schweda S, et al. Angiotensin I and II exert inotropic effect in atrial but not in ventricular human myocadium. Circulation 1993;88:1228–37.

    PubMed  CAS  Google Scholar 

  43. Holycross BJ, Peach MJ, Owens GK. Angiotensin II stimulates increased protein synthesis, not increased DNA synthesis, in intact rat aortic segments, in vitro. J Vasc Res 1993;30:80–6.

    Article  PubMed  CAS  Google Scholar 

  44. Horiuchi M, Koike G, Yamada T, Mukoyama M, Nakajima D, Dzau VJ. The growth-dependent of angiotensin II type 2 receptor is regulated by transcription factors interferon regulatory factor-1 and -2. J Biol Chem 1995;270:20225–30.

    Article  PubMed  CAS  Google Scholar 

  45. Hornig B, Kohler C, Drexler H. Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circulation 1997;95:1115–8.

    PubMed  CAS  Google Scholar 

  46. Imai T, Miyazaki H, Hirose S, et al. Cloning and sequence analysis of cDNA for human renin precursor. Proc Natl Acad Sci USA 1983;80:7405–9

    Article  PubMed  CAS  Google Scholar 

  47. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4. A randomized factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58050 patients with suspected acute myocardial infarction. Lancet 1995;345:669–85.

    Article  Google Scholar 

  48. Israili ZH, Hall WD. Cough and angioneurotric edema associated with angiotensin-converting enzyme inhibitor therapy: a reivew of the literature and pathophysiology. Ann Intern Med 1992;117:234–42.

    PubMed  CAS  Google Scholar 

  49. Jonston CI. Angiotensin receptor antagonists: focus on losatan. Lancet 1995;346:1403–7.

    Article  Google Scholar 

  50. Kawahara Y, Sunako M, Tsuda T, Fukuzaki M, Fukumoto Y, Takai Y. Angiotensin II induces expression of c-for gene through protein kinase C activation and calcium ion mobilization in cultured vascular smooth muscle cells. Biochem Biophys Res Comm 1988;150:52–9.

    Article  PubMed  CAS  Google Scholar 

  51. Keidar S, Brock JG, Aviram M. Angiotensin II enhanced lipid peroxidation of low-density lipoprotein. Am Physiol Soc 1993;8:245–8.

    CAS  Google Scholar 

  52. Kevins DM, Hao Q, Vaughan DE. Angiotensin induction of PAI-1 expression in endothelial cells is mediated by the hexapeptide angiotensin IV. J Clin Invest 1995;96:2515–20.

    Article  Google Scholar 

  53. Klinger G, Jaramillo N, Ikram H. Effects of losartan on exercise capacity, morbidity and mortality in patients with symptomatic heart failure. J Am Coll Cardiol 1997;29:Suppl A:205A. Abstract.

    Google Scholar 

  54. Knape JTA, van Zwieten PA. Positive chronotropic activity of angiotensin II in the pithed normotensive rat is primarily due to activation of cardiac β1-adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 1988;338:185–90.

    CAS  Google Scholar 

  55. Kobayashi M, Furukawa Y, Chiba S. Possitive chronotropic and inotropic effects of angiotensin II in the dog hearts. Eur J Pharmacol 1978;50:17–25.

    Article  PubMed  CAS  Google Scholar 

  56. Kojima M, Shiojima I, Yamazaki T, et al. Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation 1994;89:2204–11.

    PubMed  CAS  Google Scholar 

  57. Kokkonen JO, Saarinen J, Kovanen PT. Regulation of local angiotensin II formation in the human heart in the presence of interstitial fluid. Circulation 1997;95:1455–63.

    PubMed  CAS  Google Scholar 

  58. Lacourciere Y, Brunner H, Irwin R, et al. and the Losartan Cough Study Group. Effects of modulators of the renin-angiotensin-aldosteron system on cough. J Hypertens 1994;12:1387–93.

    PubMed  CAS  Google Scholar 

  59. Lam JYT, Lacoste L, Bourassa MC. Cilazapril and early atherosclerotic changes after balloon injury of porcine carotid arteries. Circulation 1992;85:1542–7.

    PubMed  CAS  Google Scholar 

  60. La Rouvere MT, Mortara A, Pantaleo P, Maestri R, Cobelli F, Tavazzi L. Scopolamine improves automomic balance in advanced congestive heart failure. Circulation 1994;90:838–43.

    Google Scholar 

  61. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WB. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 1990;322:1561–6.

    PubMed  CAS  Google Scholar 

  62. Liève M, Guéret P, Gayet C, et al. on behalf of the HYCAR Study Group: Ramipril-induced regression of left ventricular hypertrophy in treated hypertensive individuals. Hypertension 1995;25:92–7.

    Google Scholar 

  63. Lindpaintner K, Jin M, Niedermeyer N, Wilhelm MJ, Ganten D. Cardiac angiotensinogen and its local activation in the isolated perfused beating heart. Circ Res 1990;67:564–73.

    PubMed  CAS  Google Scholar 

  64. Lindpaintner K, Lu W, Niedermeyer N, et al. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 1993;25:133–43.

    Article  PubMed  CAS  Google Scholar 

  65. Lindpaintner K, Lee M, Larson MC, et al. Absence of association or genetic linkage between the angiotensin-converting-enzyme gene and left ventricular mass. N Engl J Med 1996;334:1023–8.

    Article  PubMed  CAS  Google Scholar 

  66. Lokuta AJ, Cooper C, Gaa ST, Wang HE, Roger TB. Angiotensin II stimulates the release of phospholipid-derived second meassengers through multiple receptor subtypes in heart cells. J Biol Chem 1994;269:4832–8.

    PubMed  CAS  Google Scholar 

  67. Lonn EM, Yusuf S, Jha P, et al. Emerging role of angiotensin-converting enzyme inhibitors in cardiac and vascular protection. Circulation 1994;90:2056–69.

    PubMed  CAS  Google Scholar 

  68. Matsubara H, Kanasaki M, Murasawa S, Tsukaguchi Y, Nio Y, Inada M. Differential gene expression and regulation of angiotensin II receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. J Clin Invest 1994;93:1592–601.

    Article  PubMed  CAS  Google Scholar 

  69. Mc Donald KM, Mock J, Dáloia A, et al. Bradykinin antagonism inhibits the antigrowth effect of converting enzyme inhibition in the dog myocardium after discrete transmural myocardial necrosis. Circulation 1995;91:2043–8.

    Google Scholar 

  70. MERCATORStudy Group. The Multicenter European Research Trial With Cilzzapril After Angioplasty to Prevent Transluminal Coronary Obstruction and Restenosis Study Group: Does the new angiotensin-converting-enzyme inhibitor cilazapril prevent restenosis after transluminal coronary angioplasty? Results of the MERCATOR Study: A multicenter, randomized, double-blind placebo-controlled trial. Circulation 1992;86:100–10.

    Google Scholar 

  71. Moss A, Hall W, Cannom DS, et al. for the Multicenter Automatic Defibrillator Implantation Trial Investigators. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med 1996;335:1933–40.

    Article  PubMed  CAS  Google Scholar 

  72. Mukoyawa M, Nakajima M, Horiuchi M, Saamura H, Pratt RE, Dzau VJ. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 1993;268:24539–42.

    Google Scholar 

  73. Munzenmaier DH, Grenne AS. Opposing action of angiotensin II on microvascular growth and arterial blood pressure. Hypertension 1996;27:760–5.

    PubMed  CAS  Google Scholar 

  74. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. Isolation of a cDNA encoding the vascular type-I angiotensin II receptor. Nature 1991;351:233–6.

    Article  PubMed  CAS  Google Scholar 

  75. Naftilan AJ, Pratt RE, Dzau VJ. Induction of platelet-derived growth factor A-chain and c-myc gene expression by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 1989;83:1419–24.

    Article  PubMed  CAS  Google Scholar 

  76. Naftilan AJ, Gilliland GK, Eldridge CS, Kraft AS. Induction of the proto-oncogene c-jun by angiotensin II. Mol Cell Biol 1990;10:5536–40.

    PubMed  CAS  Google Scholar 

  77. Nagano M, Higaki J, Nakamura F, et al. Role of cardiac angiotensin II in isoproterenol-induced left ventricular hypertrophy. Hypertension 1992;19:708–12.

    PubMed  CAS  Google Scholar 

  78. Nakai K, Itoh C, Miura HKY, et al. Delection polymorphism of the angiotensin I-converting enzyme gene is associated with serum ACE concentration and increased risk for CAD in the Japanese. Circulation 1994;90:2199–202.

    PubMed  CAS  Google Scholar 

  79. Nakajima M, Huchtinson HG, Fujimaga M. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci USA 1995;92:10663–7.

    Article  PubMed  CAS  Google Scholar 

  80. Nakashima Y, Fouad FM, Tarazi RC. Regression of left ventricular hypertrophy from systemic hypertension by enalapril. Am J Cardiol 1984;53:1044–9.

    Article  PubMed  CAS  Google Scholar 

  81. Neuß M, Regitz-Zagrosek V, Fleck E. Human cardiac fibroblasts express an angiotensin receptor with unusual binding characteristics. Biochem Biophys Res Commun 1994;204:1334–9.

    Article  PubMed  Google Scholar 

  82. Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors of angiotensin-converting enzyme: New class of orally active antihypertensive agents. Science 1977;196:441–44.

    Article  PubMed  CAS  Google Scholar 

  83. Ostezziel KJ, Röhrig N, Dietz R, Manthey J, Hecht J, Kübler W. Influence of captopril on the arterial baroreceptor reflex in patients with heart failure. Eur Heart J 1988;9:1137–45.

    Google Scholar 

  84. Osterziel KJ, Hänlein D, Wilenbrock R, Eichborn C, Luft FC, Dietz R Baroreflex sensitivity and cardiovascular mortality in patients with mild to moderate heart failure. Br Heart J 1995;73:517–22.

    Article  PubMed  CAS  Google Scholar 

  85. Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 1985;57:84–95.

    PubMed  CAS  Google Scholar 

  86. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 1990;81:1161–72.

    PubMed  CAS  Google Scholar 

  87. Pfeffer MA, Braunwald E, Moyé LA, et al. on behalf of the SAVE Investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 1992;327:669–77.

    PubMed  CAS  Google Scholar 

  88. Pitt B, Chang P, Grossman W, Dunlay M, Timmermans PB. Rationale, background, and design of the randomized receptor antagonist-angiotensin-converting enzyme inhibitor study (RAAS). Am J Cardiol 1996;15:1129–31.

    Article  Google Scholar 

  89. Pitt B, Segal R, Martinez FA, et al. on behalf of ELITE Study Investigators. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997;349:747–52.

    Article  PubMed  CAS  Google Scholar 

  90. Radomski MW, Palmer RMJ, Moncada S. The antiaggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 1987;92:639–46.

    PubMed  CAS  Google Scholar 

  91. Rakugi H, Jacob HJ, Krieger JE, Ingelfinger JR, Pratt RE. Vascular injury induces angiotensiogen gene expression in the media and neointima. Circulation 1993;87:283–90.

    PubMed  CAS  Google Scholar 

  92. Raynolds MV, Bristow MR, Bush EW, et al. Angiotensin-converting enzyme DD genotype in patients with ischemic or idiopathic dilated cardiomyopathy. Lancet 1993;342:1073–5.

    Article  PubMed  CAS  Google Scholar 

  93. Regitz-Zagrosek V, Friedel N, Bauer HP, et al. Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. Circulation 1995;91:1461–71.

    PubMed  CAS  Google Scholar 

  94. Regitz-Zagrosek V, Neuß M, Warnecke C, Holzmeister J, Hildebrand AG, Fleck E. Angiotensinrezeptoren-Organ- und subtypsperzifische Regulation bei kardiovaskulären Erkrankungen und durch Modulation des Renin-Angiotensin-Systems. Z Kardiol 1995;84:Suppl 4:61–9.

    PubMed  CAS  Google Scholar 

  95. Regitz-Zagrose V, Neuß M, Holzmeister J, Warnecke C. Fleck E. Molecular biology of angiostensin receptors and their role in human cardiovascular disease. J Mol Med 1996;74:233–51.

    Google Scholar 

  96. Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH, Vaughan DE. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II-evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function. Circulation 1993;87:1969–73.

    PubMed  CAS  Google Scholar 

  97. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990;86:1343–6.

    Article  PubMed  CAS  Google Scholar 

  98. Rochette L, Ribout C, Belichard P, Bril A, Devissaguet M. Protective effect of angiotensin converting enzyme inhibitors (CEI): captopril and perindopril on vulnerability to ventricular fibrillation during myocardial ischemia and reperfusion in rat. Clin Exp Hypertens 1987;A9:365–8.

    Article  CAS  Google Scholar 

  99. Rolfs A, Weber-Rolfs I, Regitz-Zagrosek V, Kallisch H, Riedel K, Fleck E. Genetic polymorphisms of the angiotensin II type 1 (AT1) receptor gene. Eur Heart J 1994;15:Suppl D:108–12.

    PubMed  CAS  Google Scholar 

  100. Sadoshima J, Xu Y, Slayter S, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977–84.

    Article  PubMed  CAS  Google Scholar 

  101. Sasaki Y, Yamano Y, Bardhan S, et al. Cloning and expression of a complementary DNA encoding a bovine and renal angiotensin II type-1 receptor. Nature 1991;351:230–2.

    Article  PubMed  CAS  Google Scholar 

  102. Sawa H, Tokuchi F, Mochizuki N, et al. Expression of the angiotensinogen gene and localization of its protein in the human heart. Circulation 1992;86:138–46.

    PubMed  CAS  Google Scholar 

  103. Schiffer B, Wirger A, Meybrunn M, et al. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 1994;5:2273–81.

    Google Scholar 

  104. Schorb W, Booz G, Dostal D, Conrad K, Chang K, Baker K. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 1993;72:1245–54.

    PubMed  CAS  Google Scholar 

  105. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein C, Lorell B. Increased rat cardiac angiotessin-converting enzyme activity and mRNA levels in pressure overloaded left ventricular hypertrophy: effects on coronary resistance, contractility and relaxation. J Clin Invest 1990;86:1913–20.

    Article  PubMed  CAS  Google Scholar 

  106. Schunkert H, Hense H-W, Holmer SR, et al. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med 1994;330:1634–8.

    Article  PubMed  CAS  Google Scholar 

  107. Sechi LA, Grady EF, Griffin CA, Kalinyak JE, Schambelan M. Characterization of angiotensin II receptor sub-types in the rat kidney and heart using the non-peptide antagonist DuP 753 and PD 123177. J Hypertens 1991;9:Suppl 6:S224–5.

    Google Scholar 

  108. Sen S, Tarazi RC, Bumpus FM. Effect of converting enzyme inhibitor (SQ 14225) on myocardial hypertrophy in spontaneously hypertensive rats. Hypertension 1980; 2:169–76.

    PubMed  CAS  Google Scholar 

  109. Sharpe N, Smith H, Murphy J, Hannan S. Treatment of patients with symptomless left ventricular dysfunction after myocardial infarction. Lancet 1988;1:255–9.

    Article  PubMed  CAS  Google Scholar 

  110. Skidgel RA, Englebrecht S, Johnston AR, Erdös EG. Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 1984;5:769–76.

    Article  PubMed  CAS  Google Scholar 

  111. Skidgel RA, Erdös EG. Novel activity of human angiotensin I converting enzyme: release of the NH2- and COOH-terminal tripeptides from the luteinizing hormone-relase hormone. Proc Natl Acad Sci USA 1985;82:1025–9.

    Article  PubMed  CAS  Google Scholar 

  112. Smith D, Gilbert M, Owen WG. Tissue plasminogen activator release in response to vasoactive agents. Blood 1985;66:835–9.

    PubMed  CAS  Google Scholar 

  113. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991;325:293–302.

    Google Scholar 

  114. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992;327:685–91.

    Google Scholar 

  115. Soubrier F, Alhenc-Gelas F, Hubert C, et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 1988;84:9386–90.

    Article  Google Scholar 

  116. Stafford RS, Saglam D, Blumenthal D. Low rates of angiotensin-converting enzyme inhibitor use in congestive heart failure. Circulation 1996;94:1–194, abstract.

    Google Scholar 

  117. Stoll M, Steckelings UM, Paul M, et al. The angiotensin AT 2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995;95:651–7.

    Article  PubMed  CAS  Google Scholar 

  118. Stouffer GA, Og K. Angiotensin II-induced mitogenesis of spontaneously hypertensive rat-derived cultured smooth muscle cells is dependent on autocrine production of transforming growth factor-β. Circ Res 1992;70:820–8.

    PubMed  CAS  Google Scholar 

  119. Studer R, Reinecke H, Muller B, Holtz J, Just H, Drexler H. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J Clin Invest 1994;94:301–10.

    Article  PubMed  CAS  Google Scholar 

  120. Studer R, Sütsch G, Müller B, Oechslin E, Hess OM, Drexler H. Role of pressure-overload and wall stress for cardiac gene expression of angiotensin I converting enzyme in humans. Circulation 1994;90:pt 2:1–451. abstract.

    Google Scholar 

  121. Swedberg K, Held P, Kjekshus J, Rasmussen K, Ryden L, Wedel H. on behalf of the Consensus II Study Group. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 1992;327:678–84.

    PubMed  CAS  Google Scholar 

  122. Takayanagi R, Ohnaka K, Sahai Y, et al. Molecular cloning, sequence analysis and expression of a c-DNA encoding human type-1 angiotensin II receptor. Biochem Biophys Res Commun 1992;183:910–5.

    Article  PubMed  CAS  Google Scholar 

  123. Tarazi RC, Fouad FM, Ceimo JK, Bravo EL. Renin, aldosterone and cardiac decompensation: Studies with an oral converting enzyme inhibitor in heart failure. Am J Cardiol 1979;44:1013–8.

    Article  PubMed  CAS  Google Scholar 

  124. Tewksbury DA. Angiotensiogen. Fed Proc 1983;42:2724–8.

    PubMed  CAS  Google Scholar 

  125. Tikkanen I, Omvik P, Jensen HA. Comparison of the angiotensin II antagonist losartan with the angiotensin enzyme inhibitor enalapril in patients with essential hypertension. J Hypertens 1995;13:1343–51.

    Article  PubMed  CAS  Google Scholar 

  126. Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993;45:205–51.

    PubMed  CAS  Google Scholar 

  127. Tiret L, Bonnardeaux A, Poirier O, et al. Synergistic effects of angiotensin-converting enzyme and angiotesnin-II type 1 receptor gene polymorphisms on risk of myocardial infarction. Lancet 1994;344:910–3.

    Article  PubMed  CAS  Google Scholar 

  128. Owens GK. Mechanisms of angiotensin- and arginine vasopressin- induced increases in protein synthesis and content in cultured rat aortic smooth muscle cells. Circ Res 1991;68:288–99.

    PubMed  Google Scholar 

  129. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A. Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 1990;66:883–90.

    PubMed  CAS  Google Scholar 

  130. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 1990;265:22348–57.

    PubMed  CAS  Google Scholar 

  131. Urata H, Nishimura H, Ganten D. Mechanisms of angiotensin In formation in human. Eur Heart J 1995;16:79–85.

    PubMed  CAS  Google Scholar 

  132. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor in cultured endothelial cells. J Clin Invest 1995;95:955–1001.

    Google Scholar 

  133. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991;83:1849–65.

    PubMed  CAS  Google Scholar 

  134. Weber H, Taylor DS, Molloy CJ. Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells. J Clin Invest 1994;93:788–98.

    Article  PubMed  CAS  Google Scholar 

  135. Wong PC, Hart SD, Zaspel A, Chiu AT, Smith RD, Timmermans PBMWM. Functional studies of non-peptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD 123177 (AII-2). J Pharmacol Exp Ther 1990;255:584–92.

    PubMed  CAS  Google Scholar 

  136. Yamada T, Horiuchi M, Dzau VJ. Mitogen-activated protein (MAP) kinase dephosphorylation by angiotensin II type 2 receptor induces apoptosis. Circulation 1995;92:Suppl:1–499. abstract.

    Google Scholar 

  137. Yang HYT, Erdös EG, Levin Y. A dipeptidyl carboxy-peptidase that converts angiotensin I and inactivates bradykinin. Biochem Biophys Acta 1970;214:374–6.

    PubMed  CAS  Google Scholar 

  138. Yusuf S, Pepine CJ, Garces C, et al. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fraction. Lancet 1992;340:1173–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unterberg, C., Kreuzer, H. & Buchwald, A.B. Das Renin-Angiotensin-System bei kardiovaskulären Erkrankungen. Med Klin 93, 416–425 (1998). https://doi.org/10.1007/BF03042638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03042638

Schlüsselwörter

Key Words

Navigation