Skip to main content
Log in

Die Bedeutung der Magnetokardiographie bei koronarer Herzerkrankung und Myokardinfarkt

Relevance of magnetocardiography in coronary artery disease and myocardial infarction

  • Themenübersicht
  • Published:
Herzschrittmachertherapie und Elektrophysiologie Aims and scope Submit manuscript

Zusammenfassung

Die Mehrkanalmagnetokardiographie (MKG) registriert nichtinvasiv die magnetische Aktivität des Herzens an verschiedenen Positionen über dem Thorax. Diese Information kann genutzt werden zur Rekonstruktion der Stromdichteverteilung im Myokard wie auch zur Erstellung eines magnetischen Feldes, dessen Änderung im Verlauf der kardialen De- und Repolarisation zur verfolgen ist. In ersten Ansätzen belegen verschiedene Studien, daß eine Erkennung und Lokalisation von Myokardinfarkten (MI) und myokardialer Ischämie auf dem Boden einer koronaren Herzerkrankung (KHK) durch den Nachweis krankheitsspezifischer Abweichungen des magnetischen Feldes sowie der Stromdichteverteilung im Myokard möglich ist, wobei unterschiedliche Modelle zur Quantifizierung der magnetischen Information benutzt werden. Neben diesen globalen Beurteilungen der kardialen Aktivität kann auch das Einzelsignal analog zum Oberflächenelektrokardiogramm interpretiert werden. Hier bieten sich morphologische Kriterien wie die Analyse des ST-Streckenverlaufs an sowie die Berechnung entsprechender Zeitintervalle unter Nutzung des räumlichen Informationsgehalts. So ermöglicht die räumliche Darstellung der QT-Dispersion eine Risikostratifizierung von Patienten nach MI im Hinblick auf maligne Herzrhythmusstörungen. Aufgrund der vielversprechenden Ansätze sollten die derzeitigen Methoden weiterentwickelt und an entsprechenden Fallzahlen bestätigt werden, um den Stellenwert des MKG bei KHK und MI endgültig beurteilen zu können.

Summary

Multichannel magnetocardiography (MCG) noninvasively registers the magnetic activity of the heart at different points above the thorax. This information can be used to determine the magnetic field produced by cardiac activity as well to reconstruct the current density distribution in the myocardium, which can then be examined during cardiac de- and repolarisation. First studies have shown that the detection of disease specific changes of the magnetic field and current density permit the diagnosis and localization of myocardial infaction (MI) and myocardial ischemia within the context of coronary artery disease (CAD). In these studies various approaches were used to quantify and condense the temporal and spatial changes in the magnetic signals. The integration of defined time intervals of cardiac de- and repolarisation in form of iso-integral magnetic field maps allowed a discrimination between myocardial infarct groups. Furthermore residual maps, calculated by subtracting the MCG map components of MI patients from those of normal subjects, were used to describe the infarcted region. On the basis of trajectory plots which represent the course of magnetic map extrema, patients with ventricular tachycardia after MI could be identified. Current density reconstruction during ST-segment permitted the visualization of biological injury currents during induced ischemia and infarction. Beyond the consideration of the overall magnetic activity, the signal in single channels may be examined and interpreted as is done in the body surface electrocardiogram. Morphological criteria such as the course of the ST-segment as well as the spatial distribution of cardiac time intervals may be considered. Risk stratification of patients after MI with regard to an increased risk of malignant arrhythmia is possible by making use of the spatial distribution of QT dispersion. The promising preliminary results suggest that the current methods must be developed and investigated further in studies with the appropriate number and kind of subjects in order to assess the clinical value of the MCG in patients with CAD and MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Baule G, McFee R (1963) Detection of the magnetic field in the heart. Am Heart J 66:95–96

    Article  PubMed  CAS  Google Scholar 

  2. Braginski AI, Borgmann J, Bousack H et al. (1996) Status and trends in liquid nitrogen cooled rf SQUID systems for biomagnetic applications. In: Biomag 96, 10th International Conference on Biomagnetism, Book of Abstracts, p 307

  3. Brockmeier K, Casciardi S, Comani S, et al (1991) Dynamic Magnetocardiography. In: 8th International Conference on Biomagnetism, Book of Abstracts, pp 485–486

  4. Chaikovsky L, Lutay M, Lomakovsky A, Sosnitsky V, Gushcha B, Minov Y (1996) Ventricular repolarization disturbances diagnostics in chronic ischemia patients evidence derived from MCG. In: Biomag 96, 10th International Conference on Biomagnetism, Book of Abstracts, p 210

  5. Cohen D, Savard P, Rifkin RD, Lepeschkin E, Strauss WE (1983) Magnetic measurement of S-T and T-Q segment shifts in Humans, Part II: Exercise induced S-T segment depression. Circ Res 53:274–279

    PubMed  CAS  Google Scholar 

  6. Czapski P, Ramon C, Huntsman L, Bardy G, Kim Y (1996) High resolution finite element simulations of myocardial infarctions. In: Biomag 96, 10th International Conference on Biomagnetism, Book of Abstracts, p 213

  7. Endt P, Halbohm HD, Kreiseler D, e al (1995) Ein Algorithmus zur Quantifizierung der Fragmentation des MKGs im QRS-Komplex. Biomed Tech 40:279–280

    Article  Google Scholar 

  8. Gonelli R, Galeone P, Sicuro M, Tartaglia A (1985) Magnetocardiographic isofield mapping in the characterization of the infarcted area. Med Biol Comput 23(1):59

    Google Scholar 

  9. Hailer B, Van Leeuwen P, Donker D, Grönemeyer D, Seibel R, Wehr M (1995) Die Anwendung des Biomagnetismus in der Kardiologie. Herzschrittmacher 15:90–103

    Google Scholar 

  10. Hailer B, Van Leeuwen P, Donker D, Rahn N, Lange S, Wehr M (1996) Changes in magnetic field maps at QRS-onset after myocardial infarction. In: Biomag 96, 10th International Conference on Biomagnetism, Book of Abstracts, p 215

  11. Killmann R, Jaros GG, Wach P, Graumann R, Moshage W, Renhardt M, Fleischmann PH (1995) Localization of myocardial ischaemia from the magnetocardiogram using current density reconstruction method: computer simulation study. Med Biol Eng Comput 33:643–651

    Article  PubMed  CAS  Google Scholar 

  12. Lant J, Stroink G, Montague TJ, Gardner MJ, Mieszkowski M (1991) Discrimination between myocardial infarct groups through the use of iso-integral magnetic field maps. Am J Noninvas Cardiol 5:215–222

    Google Scholar 

  13. Lant J, Stroink G, ten Voorde B, Horacek BM, Montague J (1990) Complementary nature of electrocardiographic and magnetocardiographic data in patients with ischemic heart disease. J Electrocardiol 23:315–322

    Article  PubMed  CAS  Google Scholar 

  14. Lant J, Stroink G, Vardy D, Gardner M (1989) Discrimination between patients with myocardial infarction and those with ventricular tachycardia using magnetic and potential map extrema and trajectory plots. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in Biomagnetism, Plenum Press, New York, pp 433–436

    Google Scholar 

  15. Leder U, Pohl H, Hemmann A, et al (1996) Biomagnetic analysis of distributed cardiac sources (myocardial cardiac imaging). In: Biomag 96, 10th International Conference on Biomagnetism, Book of Abstracts, p 223

  16. Mäkijärvi M, Montonen J, Toivonen L, et al (1993) Identification of patients with ventricular tachycardia after myocardial infarction by high-resolution magnetocardiography and electrocardiography. J Electrocardiol 26:117–124

    Article  PubMed  Google Scholar 

  17. Michelucci A, Padeletti L, Frati M, et al (1996) Evaluation of QT dispersion during ischaemia and reperfusion (Abstract). European Heart Journal 17:277

    Google Scholar 

  18. Mirvis DM (1985) Spatial variation of QT intervals in normal persons and patients with acute myocardial infarction. JACC 3:625–631

    Google Scholar 

  19. Monteiro EC, Della Penna S, Di Donato L, et al (1995) Magnetic detection of cardiac injury currents due to coronary artery occlusion in isolated rabbit hearts. In: Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds) Biomagnetism: Fundamental research and clinical applications. Elsevier Science, Amsterdam, pp 595–598

    Google Scholar 

  20. Moshage W, Achenbach S, Weikl A et al (1991) Progress in biomagnetic imaging of heart arrhythmias. Front Eur Radiol 8:1–19

    Google Scholar 

  21. Nakaya Y, Sumi M, Saito K, Fujino K, Murakami M, Mori H (1984) Analysis of current source of the heart using in isomagnetic and vector arrow maps. Jpn Heart J 25:701–711

    PubMed  CAS  Google Scholar 

  22. Oja O, Nousiainen J, Malmivuo J, Uusitalo A (1995) Comparison of the diagnostic performance of magnetocardiography and electrocardiography in anteroseptal and inferior infarctions. In: Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds) Biomagnetism: Fundamental research and clinical applications. Elsevier Science, Amsterdam, pp 595–598

    Google Scholar 

  23. Perkiömäki JS, Koistinen MJ, Yli-Mäyry S, Huikuri HV (1995) Dispersion of QT interval in patients with and without susceptibility to ventricular tachyarrhythmias after previous myocardial infarction. JACC 26:174–179

    PubMed  Google Scholar 

  24. Savard P, Cohen D, Lepeschkin E, Cuffin BN, Madias JE (1983) Magnetic measurement of S-T and T-Q segments shifts in humans, Part I: Early repolarization and left bundle branch block. Circ Res 53:264–273

    PubMed  CAS  Google Scholar 

  25. Seese B, Moshage W, Achenbach S, Killmann R, Bachmann K (1995) Magnetocardiographic (MCG) analysis of myocardial injury currents. In: Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds) Biomagnetism: Fundamental research and clinical applications. Elsevier Science, Amsterdam, pp 628–632

    Google Scholar 

  26. Stroink G (1993) Cardiomagnetic Imaging. In: Zaret BL, Kaufman L, Berson ASY, Dunn RA: Frontiers in Cardiovascular Imaging. Ravens Press, New York, pp 161–177

    Google Scholar 

  27. Stroink G, Lant J, Elliott P, Charlebois P, Gardner MJ (1992) Discrimination between myocardial infarct and ventricular tachycardia patients using magnetocardiographic trajectory plots and iso-integral maps. J Electrocardiol 25:129–142

    Article  PubMed  CAS  Google Scholar 

  28. Stroink G, MacAulay C, Montague TJ, Horacek BM (1985) Normal and abnormal components in magnetocardiographic maps of a subject with myocardial infarction. Med Biol Comp 23:61–62

    Google Scholar 

  29. Surawicz B, Knoebel SB (1984) Long QT: Good, Bad or Indifferent? JACC 4:398–413

    PubMed  CAS  Google Scholar 

  30. Trahms L, Birghoff M, Koch H, Zimmermann R, Brockmeier K, Schmitz L (1995) Im Gegensatz zum EKG zeigt das MKG von Herzgesunden deutliche Veränderungen unter Belastung. Biomed Tech 40:257

    Google Scholar 

  31. Van Leeuwen P, Hailer B, Wehr M (1996) Spatial distribution of QT-intervals: an alternative approach to QT-dispersion. PACE 19:1894–1899

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hailer, B. Die Bedeutung der Magnetokardiographie bei koronarer Herzerkrankung und Myokardinfarkt. Herzschr Elektrophys 8, 167–177 (1997). https://doi.org/10.1007/BF03042399

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03042399

Schlüsselwörter

Key words

Navigation